World-Health-Organization. Global tuberculosis report 2023. Geneva: World Health Organization; 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023.

Ravimohan S, Kornfeld H, Weissman D, Bisson GP. Tuberculosis and lung damage: from epidemiology to pathophysiology. Eur Respir Rev. 2018;27(147):170077. https://doi.org/10.1183/16000617.0077-2017.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Amaral AF, Coton S, Kato B, Tan WC, Studnicka M, Janson C, et al. Tuberculosis associates with both airflow obstruction and low lung function: BOLD results. Eur Respir J. 2015;46(4):1104–12.

PubMed 
PubMed Central 

Google Scholar
 

Ralph AP, Kenangalem E, Waramori G, Pontororing GJ, Sandjaja, Tjitra E, et al. High morbidity during treatment and residual pulmonary disability in pulmonary tuberculosis: under-recognised phenomena. PLoS One. 2013;8(11):e80302.

PubMed 
PubMed Central 

Google Scholar
 

Christensen AS, Roed C, Andersen PH, Andersen AB, Obel N. Long-term mortality in patients with pulmonary and extrapulmonary tuberculosis: a Danish nationwide cohort study. Clin Epidemiol. 2014;6:405–21.

PubMed 
PubMed Central 

Google Scholar
 

Gai X, Allwood B, Sun Y. Post-tuberculosis lung disease and chronic obstructive pulmonary disease. Chin Med J (Engl). 2023;136(16):1923–8.

CAS 
PubMed 

Google Scholar
 

Rao Y, Cao W, Qu J, Zhang X, Wang J, Wang J, et al. More severe lung lesions in smoker patients with active pulmonary tuberculosis were associated with peripheral NK cell subsets. Tuberculosis. 2023;138:102293.

CAS 
PubMed 

Google Scholar
 

Ralph AP, Ardian M, Wiguna A, Maguire GP, Becker NG, Drogumuller G, et al. A simple, valid, numerical score for grading chest x-ray severity in adult smear-positive pulmonary tuberculosis. Thorax. 2010;65(10):863–9.

PubMed 

Google Scholar
 

Ranzani OT, Rodrigues LC, Bombarda S, Minto CM, Waldman EA, Carvalho CRR. Long-term survival and cause-specific mortality of patients newly diagnosed with tuberculosis in São Paulo state, Brazil, 2010–15: a population-based, longitudinal study. Lancet Infect Dis. 2020;20(1):123–32.

PubMed 
PubMed Central 

Google Scholar
 

Tiberi S, Torrico MM, Rahman A, Krutikov M, Visca D, Silva DR, et al. Managing severe tuberculosis and its sequelae: from intensive care to surgery and rehabilitation. J Bras Pneumol. 2019;45(2):e20180324.

PubMed 
PubMed Central 

Google Scholar
 

Kiran B, Cagatay T, Clark P, Kosar F, Cagatay P, Yurt S, et al. Can immune parameters be used as predictors to distinguish between pulmonary multidrug-resistant and drug-sensitive tuberculosis? Arch Med Sci. 2010;6(1):77–82.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yoon NB, Son C, Um SJ. Role of the neutrophil-lymphocyte count ratio in the differential diagnosis between pulmonary tuberculosis and bacterial community-acquired pneumonia. Ann Lab Med. 2013;33(2):105–10.

PubMed 
PubMed Central 

Google Scholar
 

La Manna MP, Orlando V, Dieli F, Di Carlo P, Cascio A, Cuzzi G, et al. Quantitative and qualitative profiles of circulating monocytes may help identifying tuberculosis infection and disease stages. PLoS One. 2017;12(2):e0171358.

PubMed 
PubMed Central 

Google Scholar
 

Jeon Y, Lee WI, Kang SY, Kim MH. Neutrophil-to-monocyte-plus-lymphocyte ratio as a potential marker for discriminating pulmonary tuberculosis from nontuberculosis infectious lung diseases. Lab Med. 2019;50(3):286–91.

PubMed 

Google Scholar
 

Isaac V, Wu CY, Huang CT, Baune BT, Tseng CL, McLachlan CS. Elevated neutrophil to lymphocyte ratio predicts mortality in medical inpatients with multiple chronic conditions. Medicine. 2016;95(23):e3832.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lowe DM, Redford PS, Wilkinson RJ, O’Garra A, Martineau AR. Neutrophils in tuberculosis: friend or foe? Trends Immunol. 2012;33(1):14–25.

CAS 
PubMed 

Google Scholar
 

Yeremeev V, Linge I, Kondratieva T, Apt A. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis. 2015;95(4):447–51.

PubMed 

Google Scholar
 

Chan SC, Shum DK, Ip MS. Sputum sol neutrophil elastase activity in bronchiectasis: differential modulation by syndecan-1. Am J Respir Crit Care Med. 2003;168(2):192–8.

PubMed 

Google Scholar
 

Jones TPW, Dabbaj S, Mandal I, Cleverley J, Cash C, Lipman MCI, et al. The blood neutrophil count after 1 month of treatment predicts the radiologic severity of lung disease at treatment end. Chest. 2021;160(6):2030–41.

CAS 
PubMed 

Google Scholar
 

Bucşan AN, Chatterjee A, Singh DK, Foreman TW, Lee TH, Threeton B, et al. Mechanisms of reactivation of latent tuberculosis infection due to SIV coinfection. J Clin Invest. 2019;129(12):5254–60.

PubMed 
PubMed Central 

Google Scholar
 

Scioscia G, Lacedonia D, Giuffreda E, Caccavo I, Quarato CMI, Soccio P, et al. Adaptive immunity in different CT patterns of active tuberculosis and possible variability according to patients’ geographic provenience. Front Med. 2022;9:890609.


Google Scholar
 

National Health and Family Planning Commission of the People’s Republic of China. WS 288–2017 diagnostic criteria for tuberculosis. Electron J Emerg Infect Dis. 2018;3:59–61.


Google Scholar
 

Song Q, Guo X, Zhang L, Yang L, Lu X. New approaches in the classification and prognosis of sign clusters on pulmonary CT images in patients with multidrug-resistant tuberculosis. Front Microbiol. 2021;12:714617.

PubMed 
PubMed Central 

Google Scholar
 

Menon B, Nima G, Dogra V, Jha S. Evaluation of the radiological sequelae after treatment completion in new cases of pulmonary, pleural, and mediastinal tuberculosis. Lung India. 2015;32(3):241–5.

PubMed 
PubMed Central 

Google Scholar
 

Lee JJ, Chong PY, Lin CB, Hsu AH, Lee CC. High resolution chest CT in patients with pulmonary tuberculosis: characteristic findings before and after antituberculous therapy. Eur J Radiol. 2008;67(1):100–4.

PubMed 

Google Scholar
 

Long R, Maycher B, Dhar A, Manfreda J, Hershfield E, Anthonisen N. Pulmonary tuberculosis treated with directly observed therapy: serial changes in lung structure and function. Chest. 1998;113(4):933–43.

CAS 
PubMed 

Google Scholar
 

Nakiwala JK, Walker NF, Diedrich CR, Worodria W, Meintjes G, Wilkinson RJ, et al. Neutrophil activation and enhanced release of granule products in HIV-TB immune reconstitution inflammatory syndrome. JAIDS J Acquir Immune Defic Syndr. 2018;77(2):221–9.

CAS 
PubMed 

Google Scholar
 

Lu Y, Hu Z, Wang F, Yao H, Zhu H, Wang Z, et al. Worsening CSF parameters after the start of anti-tuberculosis treatment predicts intracerebral tuberculoma development. Int J Infect Dis. 2020;101:395–402.

PubMed 

Google Scholar
 

Panteleev AV, Nikitina IY, Burmistrova IA, Kosmiadi GA, Radaeva TV, Amansahedov RB, et al. Severe tuberculosis in humans correlates best with neutrophil abundance and lymphocyte deficiency and does not correlate with antigen-specific CD4 T-cell response. Front Immunol. 2017;8:963.

PubMed 
PubMed Central 

Google Scholar
 

Ndlovu LN, Peetluk L, Moodley S, Nhamoyebonde S, Ngoepe AT, Mazibuko M, et al. Increased neutrophil count and decreased neutrophil CD15 expression correlate with TB disease severity and treatment response irrespective of HIV co-infection. Front Immunol. 2020;11:1872.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fonseca KL, Maceiras AR, Matos R, Simoes-Costa L, Sousa J, Cá B, et al. Deficiency in the glycosyltransferase Gcnt1 increases susceptibility to tuberculosis through a mechanism involving neutrophils. Mucosal Immunol. 2020;13(5):836–48.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Leisching GR. Susceptibility to tuberculosis is associated with PI3K-dependent increased mobilization of neutrophils. Front Immunol. 2018;9:1669.

PubMed 
PubMed Central 

Google Scholar
 

Ong CW, Elkington PT, Brilha S, Ugarte-Gil C, Tome-Esteban MT, Tezera LB, et al. Neutrophil-derived MMP-8 drives AMPK-dependent matrix destruction in human pulmonary tuberculosis. PLoS Pathog. 2015;11(5):e1004917.

PubMed 
PubMed Central 

Google Scholar
 

Ong CWM, Fox K, Ettorre A, Elkington PT, Friedland JS. Hypoxia increases neutrophil-driven matrix destruction after exposure to Mycobacterium tuberculosis. Sci Rep. 2018;8(1):11475.

PubMed 
PubMed Central 

Google Scholar
 

An HR, Bai XJ, Liang JQ, Wang T, Wang ZY, Xue Y, et al. The relationship between absolute counts of lymphocyte subsets and clinical features in patients with pulmonary tuberculosis. Clin Respir J. 2022;16(5):369–79.

PubMed 
PubMed Central 

Google Scholar
 

Wen Z, Wang L, Ma H, Li L, Wan L, Shi L, et al. Integrated single-cell transcriptome and T cell receptor profiling reveals defects of T cell exhaustion in pulmonary tuberculosis. J Infect. 2024;88(6):106158.

CAS 
PubMed 

Google Scholar
 

Romero-Tamarit A, Vallès X, Munar-García M, Espinosa-Pereiro J, Saborit N, Tortola MT, et al. A longitudinal prospective study of active tuberculosis in a Western Europe setting: insights and findings. Infection. 2024;52(2):611–23.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jiang Y, Ni K, Fang M, Li J. The effects of serum hs-CRP on the incidence of lung cancer in male patients with pulmonary tuberculosis. Iran J Public Health. 2019;48(7):1265–9.

PubMed 
PubMed Central 

Google Scholar
 

Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte subsets: phenotypes and function in tuberculosis infection. Front Immunol. 2018;9:1726.

PubMed 
PubMed Central 

Google Scholar
 

Mitra A, Ko YH, Cingolani G, Niederweis M. Heme and hemoglobin utilization by Mycobacterium tuberculosis. Nat Commun. 2019;10(1):4260.

PubMed 
PubMed Central 

Google Scholar
 

Gomes I, Mathur SK, Espenshade BM, Mori Y, Varga J, Ackerman SJ. Eosinophil-fibroblast interactions induce fibroblast IL-6 secretion and extracellular matrix gene expression: implications in fibrogenesis. J Allergy Clin Immunol. 2005;116(4):796–804.

CAS 
PubMed 

Google Scholar
 

Klion AD, Ackerman SJ, Bochner BS. Contributions of eosinophils to human health and disease. Annu Rev Pathol. 2020;15:179–209.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bohrer AC, Castro E, Hu Z, Queiroz ATL, Tocheny CE, Assmann M, Sakai S, Nelson C, Baker PJ, Ma H, et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resistance in mice. J Exp Med. 2021;218(10):e20210469.

Bohrer AC, Castro E, Tocheny CE, Assmann M, Schwarz B, Bohrnsen E, et al. Rapid GPR183-mediated recruitment of eosinophils to the lung after Mycobacterium tuberculosis infection. Cell Rep. 2022;40(4):111144.

CAS 
PubMed 
PubMed Central 

Google Scholar
Â