Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol. 2021;82:193–7.


Google Scholar
 

Nikishchenko V, Kolotukhina N, Dyachuk V. Comparative neuroanatomy of pediveliger larvae of various bivalves from the sea of Japan. Biology. 2023;12:1341.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X. Structure, function and drug discovery of GPCR signaling. Mol Biomed. 2023;4:46.

PubMed 
PubMed Central 

Google Scholar
 

Casadó Anguera V. Allosteric interactions between catecholamine receptors and other G protein-coupled receptors: Pharmacological and functional characterization. Barcelona: Universitat de Barcelona; 2018.


Google Scholar
 

Fabbri E, Balbi T, Canesi L. Neuroendocrine functions of monoamines in invertebrates: focus on bivalve molluscs. Mol Cell Endocrinol. 2024;588:112215.

CAS 
PubMed 

Google Scholar
 

MacDonald E, Kobilka BK, Scheinin M. Gene targeting — homing in on α2-adrenoceptor-subtype function. Trends Pharmacol Sci. 1997;18:211–9.

CAS 
PubMed 

Google Scholar
 

Chen X, Perry SF, Aris-Brosou S, Selva C, Moon TW. Characterization and functional divergence of the α1-adrenoceptor gene family: insights from rainbow trout (Oncorhynchus mykiss). Physiol Genomics. 2007;3:142–53.

CAS 

Google Scholar
 

Nickerson JG, Dugan SG, Drouin G, Moon TW. A putative β2-adrenoceptor from the rainbow trout (Oncorhynuchus mykiss). FEBS J. 2001;268:6465–72.

CAS 

Google Scholar
 

Nickerson JG, Dugan SG, Drouin G, Perry SF, Moon TW. Activity of the unique beta-adrenergic Na+/H + exchanger in trout erythrocytes is controlled by a novel beta3-AR subtype. Am J Physiol Regul Integr Comp Physiol. 2003;285:R526–535.

PubMed 

Google Scholar
 

Ruuskanen JO, Laurila J, Xhaard H, Rantanen VV, Vuoriluoto K, Wurster S, et al. Conserved structural, pharmacological and functional properties among the three human and five zebrafish alpha 2-adrenoceptors. Br J Pharmacol. 2005;144:165–77.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang Z, Nishimura Y, Shimada Y, Umemoto N, Hirano M, Zang L, Oka T, Sakamoto C, Kuroyanagi J, Tanaka T. Zebrafish β-adrenergic receptor mRNA expression and control of pigmentation. Gene. 2009;446:18–27.

CAS 
PubMed 

Google Scholar
 

Dugan SG, Chen X, Nickerson JG, Montpetit CJ, Moon TW. Regulation of the black bullhead hepatic β-adrenoceptors. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 2008;149:265–74.


Google Scholar
 

Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 2017;15:6.

PubMed 
PubMed Central 

Google Scholar
 

Wang G, Liu B, Tang B, Zhang T, Xiang J. Pharmacological and immunocytochemical investigation of the role of catecholamines on larval metamorphosis by β-adrenergic-like receptor in the bivalve meretrix meretrix. Aquaculture. 2006;258:611–8.

CAS 

Google Scholar
 

Blais V, Bounif N, Dubé F. Characterization of a novel octopamine receptor expressed in the surf clam spisula solidissima. Gen Comp Endocrinol. 2010;167:215–27.

CAS 
PubMed 

Google Scholar
 

Perez DM. Current developments on the role of α1-adrenergic receptors in cognition, cardioprotection, and metabolism. Front Cell Dev Biol. 2021;9:652152.

PubMed 
PubMed Central 

Google Scholar
 

Rodrigues A, Prímola-Gomes T, Peluzio M, Hermsdorff H, Natali A. Aerobic exercise and lipolysis: a review of the β-adrenergic signaling pathways in adipose tissue. Sci Sports. 2021;36:16–26.


Google Scholar
 

Huang L, Ye X, Ho CK, Gao Y, Wen D, Sun J, Liu Y, Liu Y, Wang G, Sun Y. Type 2 diabetes-associated Phenylacetylglutamine induces deleterious inflammation cycle in myeloid cells through β(2) adrenergic receptors and impedes wound healing. Adv Sci. 2025;14:e08205.

Vida C, Portilla Y, Murga C. Adrenergic modulation of neutrophil and macrophage functions: pathophysiological cues. Curr Opin Physiol. 2024. https://doi.org/10.1016/j.cophys.2024.100780.

Article 

Google Scholar
 

Dorotea D, Ha H. Activation of β2 adrenergic receptor signaling modulates inflammation. A target limiting the progression of kidney diseases. Arch Pharm Res. 2021;44:49–62.

CAS 
PubMed 

Google Scholar
 

Gebert-Oberle B, Giles J, Clayton S, Tran QK. Calcium/calmodulin regulates signaling at the α(1A) adrenoceptor. Eur J Pharmacol. 2019;848:70–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu GR, Li S, Chen TH, Hsu WH. Α2-adrenergic receptor-mediated Ca2 + influx and release in Porcine myometrial cells. Biol Reprod. 1997;56:1343–50.


Google Scholar
 

Lacoste A, Malham SK, Cueff A, Poulet SA. Noradrenaline modulates hemocyte reactive oxygen species production via β-adrenergic receptors in the oyster Crassostrea gigas. Dev Comp Immunol. 2001;25:285–9.

CAS 
PubMed 

Google Scholar
 

Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, et al. The cholinergic and adrenergic autocrine signaling pathway mediates immunomodulation in oyster Crassostrea gigas. Front Immunol. 2018;9:284.

PubMed 
PubMed Central 

Google Scholar
 

Liu Z, Wang L, Zhou Z, Sun Y, Wang M, Wang H, et al. The simple neuroendocrine-immune regulatory network in oyster Crassostrea gigas mediates complex functions. Sci Rep. 2016;6:26396.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheng W, Chieu HT, Ho MC, Chen JC. Noradrenaline modulates the immunity of white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2006;21:11–9.

CAS 
PubMed 

Google Scholar
 

Chang CC, Hung M-D, Cheng W. Norepinephrine depresses the immunity and disease-resistance ability via α1- and β1-adrenergic receptors of macrobrachium rosenbergii. Dev Comp Immunol. 2011;35:685–91.

CAS 
PubMed 

Google Scholar
 

Marino F, Cosentino M. Adrenergic modulation of immune cells: an update. Amino Acids. 2013;45:55–71.

CAS 
PubMed 

Google Scholar
 

Zhou Z, Jiang Q, Wang M, Yue F, Wang L, Wang L, et al. Modulation of haemocyte phagocytic and antibacterial activity by alpha-adrenergic receptor in scallop Chlamys farreri. Fish Shellfish Immunol. 2013;35:825–32.

CAS 
PubMed 

Google Scholar
 

Liu Z, Zhou Z, Wang L, Qiu L, Zhang H, Wang H, et al. CgA1AR-1 acts as an alpha-1 adrenergic receptor in oyster Crassostrea gigas mediating both cellular and humoral immune response. Fish Shellfish Immunol. 2016;58:50–8.

CAS 
PubMed 

Google Scholar
 

Li M, Liu Z, Liang Y, Wang W, Liu C, Yang C, et al. A granulocyte highly-expressed α2 adrenergic receptor promotes the expression of IL-17 and TNFs in the immune response of oyster Magallana gigas. Aquaculture. 2025;596:741884.

CAS 

Google Scholar
 

Faure G, Joseph AP, Craveur P, Narwani TJ, Srinivasan N, Gelly JC, et al. IpBAvizu: a PyMOL plugin for an efficient 3D protein structure superimposition approach. Source Code Biol Med. 2019;14:1–5.


Google Scholar
 

Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinf. 2003;2:2–3.


Google Scholar
 

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. Jalview version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics. 2009;25:1189–91.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant. 2020;13:1194–202.

CAS 
PubMed 

Google Scholar
 

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302.

CAS 
PubMed 

Google Scholar
 

Verburg-van Kemenade BML, Cohen N, Chadzinska M. Neuroendocrine-immune interaction: evolutionarily conserved mechanisms that maintain allostasis in an ever-changing environment. DCI. 2017;66:2–23.

CAS 

Google Scholar
 

Samdani A, Vetrivel U. POAP: a GNU parallel based multithreaded pipeline of open babel and AutoDock suite for boosted high throughput virtual screening. Comput Biol Chem. 2018;74:39–48.

CAS 
PubMed 

Google Scholar
 

Huey R, Morris GM, Forli S. Using AutoDock 4 and AutoDock Vina with autodocktools: a tutorial. Scripps Res Inst Mol Graphics Lab. 2012;10550:1000.


Google Scholar
 

DeLano WL, Pymol. An open-source molecular graphics tool. CCP4 Newsl Protein Crystallogr. 2002;40:82–92.


Google Scholar
 

Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012;490:49–54.

CAS 
PubMed 

Google Scholar
 

Wang W, Wang L, Liu Z, Song X, Yi Q, Yang C, et al. The involvement of TLR signaling and anti-bacterial effectors in enhanced immune protection of oysters after Vibrio Splendidus pre-exposure. Dev Comp Immunol. 2020;103:103498.

CAS 
PubMed 

Google Scholar
 

Dong M, Wu W, Cheng X, Zuo J, Wang W, Wang L, et al. A transcription factor ATF3 involves in the phagocytosis of granulocytes in oyster Crassostrea gigas. Dev Comp Immunol. 2024;161:105244.

CAS 
PubMed 

Google Scholar
 

Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006;326:541–51.

CAS 
PubMed 

Google Scholar
 

Link R, Daunt D, Barsh G, Chruscinski A, Kobilka B. Cloning of two mouse genes encoding alpha 2-adrenergic receptor subtypes and identification of a single amino acid in the mouse alpha 2-C10 homolog responsible for an interspecies variation in antagonist binding. Mol Pharmacol. 1992;42:16–27.

CAS 
PubMed 

Google Scholar
 

Bylund DB. Alpha-2 adrenoceptor subtypes: are more better? Br J Pharmacol. 2005;144:159–60.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

MacKinnon AC, Spedding M, Brown CM. α2-Adrenoceptors: more subtypes but fewer functional differences. TIPS. 1994;15:119–23.

CAS 
PubMed 

Google Scholar
 

Ruuskanen JO, Xhaard H, Marjamäki A, Salaneck E, Salminen T, Yan YL, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M. Identification of duplicated fourth α2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol. 2004;21:14–28.

CAS 
PubMed 

Google Scholar
 

Harun-Or-Rashid M, Lindqvist N, Hallböök F. Transactivation of EGF receptors in chicken Müller cells by α2A-adrenergic receptors stimulated by brimonidine. Invest Ophthalmol Vis Sci. 2014;55:3385–94.

CAS 
PubMed 

Google Scholar
 

Céspedes HA, Zavala K, Vandewege MW, Opazo JC. Evolution of the α(2)-adrenoreceptors in vertebrates: ADRA2D is absent in mammals and crocodiles. Gen Comp Endocrinol. 2017;250:85–94.

PubMed 

Google Scholar
 

Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010;20:1313–26.

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kuraku S, Kaiya H, Tanaka T, Hyodo S. Evolution of vertebrate hormones and their receptors: insights from non-osteichthyan genomes. Annu Rev Anim Biosci. 2023;11:163–82.

CAS 
PubMed 

Google Scholar
 

Wang Y, Yuan B, Deng X, He L, Wang S, Zhang Y, et al. Comparison of alpha1-adrenergic receptor cell-membrane stationary phases prepared from expressed cell line and from rabbit hepatocytes. Anal Bioanal Chem. 2006;386:2003–11.

CAS 
PubMed 

Google Scholar
 

Marullo S, Delavier-Klutchko C, Guillet J-G, Charbit A, Strosberg AD, Jean Emorine L. Expression of human β1 and β2 adrenergic receptors in E. Coli as a new tool for ligand screening. Bio Technol. 1989;7:923–7.

CAS 

Google Scholar
 

Piascik MT, Perez DM. Alpha1-adrenergic receptors: new insights and directions. J Pharmacol Exp Ther. 2001;298:403–10.

CAS 
PubMed 

Google Scholar
 

Page LR. Developmental analysis reveals labial and subradular ganglia and the primary framework of the nervous system in nudibranch gastropods. J Neurobiol. 1993;24:1443–59.

CAS 
PubMed 

Google Scholar
 

Chen CS, Barnoud C, Scheiermann C. Peripheral neurotransmitters in the immune system. Curr Opin Physiol. 2021;19:73–9.


Google Scholar
 

Guirao X, Kumar A, Katz J, Smith M, Lin E, Keogh C, Calvano SE, Lowry SF. Catecholamines increase monocyte TNF receptors and inhibit TNF through beta 2-adrenoreceptor activation. Am J Physiol. 1997;273:E1203–1208.

CAS 
PubMed 

Google Scholar
 

Zhu J, Naulaerts S, Boudhan L, Martin M, Gatto L, Van den Eynde BJ. Tumour immune rejection triggered by activation of α2-adrenergic receptors. Nature. 2023;618:607–15.

CAS 
PubMed 

Google Scholar
 

Ağaç D, Estrada LD, Maples R, Hooper LV, Farrar JD. The β2-adrenergic receptor controls inflammation by driving rapid IL-10 secretion. Brain Behav Immun. 2018;74:176–85.

PubMed 
PubMed Central 

Google Scholar
 

Wang JJ, Li DJ. Research advances on adrenergic receptor signaling involved in disease microenvironment through regulation of macrophages. Acta Physiol Sin. 2020;72:227–34.


Google Scholar
 

Gourbal B, Pinaud S, Beckers GJ, Van Der Meer JW, Conrath U, Netea MG. Innate immune memory: an evolutionary perspective. Immunol Rev. 2018;283:21–40.

CAS 
PubMed 

Google Scholar
 

Quintin J, Cheng SC, van Der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol. 2014;29:1–7.

CAS 
PubMed 

Google Scholar
 

Melillo D, Marino R, Italiani P, Boraschi D. Innate immune memory in invertebrate metazoans: a critical appraisal. Front Immunol. 2018;9:1915.

PubMed 
PubMed Central 

Google Scholar