Riazi K, Azhari H, Charette JH, Underwood FE, King JA, Afshar EE, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851–61. https://doi.org/10.1016/S2468-1253(22)00165-0.

Article 
CAS 
PubMed 

Google Scholar
 

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023;79(6):1542–56. https://doi.org/10.1016/j.jhep.2023.06.003.

Article 
CAS 
PubMed 

Google Scholar
 

Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73(1):202–9. https://doi.org/10.1016/j.jhep.2020.03.039.

Article 
PubMed 

Google Scholar
 

Rinella ME, Lazarus JV, Ratziu V, Francque SM, Sanyal AJ, Kanwal F, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology. 2023;78(6):1966–86. https://doi.org/10.1097/HEP.0000000000000520.

Article 
PubMed 

Google Scholar
 

Simon TG, Roelstraete B, Khalili H, Hagstrom H, Ludvigsson JF. Mortality in biopsy-confirmed nonalcoholic fatty liver disease: results from a nationwide cohort. Gut. 2021;70(7):1375–82. https://doi.org/10.1136/gutjnl-2020-322786.

Article 
PubMed 

Google Scholar
 

Sakurai Y, Kubota N, Yamauchi T, Kadowaki T. Role of insulin resistance in MAFLD. Int J Mol Sci. 2021;22(8):4156. https://doi.org/10.3390/ijms22084156.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ramanathan R, Ali AH, Ibdah JA. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease. Int J Mol Sci. 2022;23(13):7280. https://doi.org/10.3390/ijms23137280.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sun J, Zhang D, Li Y. Extracellular vesicles in pathogenesis and treatment of metabolic associated fatty liver disease. Front Physiol. 2022;13:909518. https://doi.org/10.3389/fphys.2022.909518.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Fred RG, Steen Pedersen J, Thompson JJ, Lee J, Timshel PN, Stender S, et al. Single-cell transcriptome and cell type-specific molecular pathways of human non-alcoholic steatohepatitis. Sci Rep. 2022;12(1):13484. https://doi.org/10.1038/s41598-022-16754-7.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13(7):412–25. https://doi.org/10.1038/nrgastro.2016.85.

Article 
CAS 
PubMed 

Google Scholar
 

Lichtman SN, Sartor RB, Keku J, Schwab JH. Hepatic inflammation in rats with experimental small intestinal bacterial overgrowth. Gastroenterology. 1990;98(2):414–23. https://doi.org/10.1016/0016-5085(90)90833-m.

Article 
CAS 
PubMed 

Google Scholar
 

Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology. 2013;57(2):601–9. https://doi.org/10.1002/hep.26093.

Article 
CAS 
PubMed 

Google Scholar
 

Zhang B, Zhao J, Jiang M, Peng D, Dou X, Song Y, et al. The potential role of gut microbial-derived exosomes in metabolic-associated fatty liver disease: implications for treatment. Front Immunol. 2022;13:893617. https://doi.org/10.3389/fimmu.2022.893617.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Boel F, Akimov V, Teuchler M, Terkelsen MK, Wernberg CW, Larsen FT, et al. Deep proteome profiling of metabolic dysfunction-associated steatotic liver disease. Commun Med. 2025;5(1):56. https://doi.org/10.1038/s43856-025-00780-3.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Montgomery MK, Bayliss J, Nie S, De Nardo W, Keenan SN, Miotto PM, et al. Deep proteomic profiling unveils arylsulfatase A as a non-alcoholic steatohepatitis inducible hepatokine and regulator of glycemic control. Nat Commun. 2022;13(1):1259. https://doi.org/10.1038/s41467-022-28889-2.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mocciaro G, D’Amore S, Jenkins B, Kay R, Murgia A, Herrera-Marcos LV, et al. Lipidomic approaches to study HDL metabolism in patients with central obesity diagnosed with metabolic syndrome. Int J Mol Sci. 2022;23(12):6786. https://doi.org/10.3390/ijms23126786.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Sehgal R, Kaur N, Maiwall R, Ramakrishna G, Maras JS, Trehanpati N. Plasma proteomic analysis identified proteins associated with faulty neutrophils functionality in decompensated cirrhosis patients with sepsis. Cells. 2022;11(11):1745. https://doi.org/10.3390/cells11111745.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

European Association for the Study of the Liver, European Association for the Study of Diabetes, European Association for the Study of Obesity. EASL-EASD-EASO clinical practice guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD): executive summary. Diabetologia. 2024;67(11):2375–92. https://doi.org/10.1007/s00125-024-06196-3.

Article 
PubMed Central 

Google Scholar
 

Lei F, Liu YM, Zhou F, Qin JJ, Zhang P, Zhu L, et al. Longitudinal association between markers of liver injury and mortality in COVID-19 in China. Hepatology. 2020;72(2):389–98. https://doi.org/10.1002/hep.31301.

Article 
CAS 
PubMed 

Google Scholar
 

Kwo PY, Cohen SM, Lim JK. ACG clinical guideline: evaluation of abnormal liver chemistries. Am J Gastroenterol. 2017;112(1):18–35. https://doi.org/10.1038/ajg.2016.517.

Article 
CAS 
PubMed 

Google Scholar
 

Terrault NA, Bzowej NH, Chang KM, Hwang JP, Jonas MM, Murad MH, et al. AASLD guidelines for treatment of chronic hepatitis B. Hepatology. 2016;63(1):261–83. https://doi.org/10.1002/hep.28156.

Article 
PubMed 

Google Scholar
 

Shen B, Yi X, Sun Y, Bi X, Du J, Zhang C, et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. Cell. 2020;182(1):59–72. https://doi.org/10.1016/j.cell.2020.05.032.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol. 2021;17(11):e1009442. https://doi.org/10.1371/journal.pcbi.1009442.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13. https://doi.org/10.1093/nar/gky1131.

Article 
CAS 
PubMed 

Google Scholar
 

Zhong S, Sun YQ, Huo JX, Xu WY, Yang YN, Yang JB, et al. The gut microbiota-aromatic hydrocarbon receptor (AhR) axis mediates the anticolitic effect of polyphenol-rich extracts from Sanghuangporus. Imeta. 2024;3(2):e180. https://doi.org/10.1002/imt2.180.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yang F, Zhu B, Ozols E, Bai H, Jiang M, Ma FY, et al. A gradient model of renal ischemia reperfusion injury to investigate renal interstitial fibrosis. Int J Immunopathol Pharmacol. 2024;38:3946320241288426. https://doi.org/10.1177/03946320241288426.

Article 
CAS 
PubMed 

Google Scholar
 

Gwag T, Lee S, Li Z, Newcomb A, Otuagomah J, Weinman SA, et al. Platelet-derived thrombospondin 1 promotes immune cell liver infiltration and exacerbates diet-induced steatohepatitis. JHEP Rep. 2024;6(4):101019. https://doi.org/10.1016/j.jhepr.2024.101019.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gwag T, Ma E, Zhou C, Wang S. Anti-CD47 antibody treatment attenuates liver inflammation and fibrosis in experimental non-alcoholic steatohepatitis models. Liver Int. 2022;42(4):829–41. https://doi.org/10.1111/liv.15182.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA, Network NCR. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology. 2011;53(3):810–20. https://doi.org/10.1002/hep.24127.

Article 
CAS 
PubMed 

Google Scholar
 

Friedman J, Alm EJ. Inferring correlation networks from genomic survey data. PLoS Comput Biol. 2012;8(9):e1002687. https://doi.org/10.1371/journal.pcbi.1002687.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

He S, Gu H, Yang J, Su Q, Li X, Qin L. Hemoglobin concentration is associated with the incidence of metabolic syndrome. BMC Endocr Disord. 2021;21(1):53. https://doi.org/10.1186/s12902-021-00719-4.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Giorgio V, Mosca A, Alterio A, Alisi A, Grieco A, Nobili V, et al. Elevated hemoglobin level is associated with advanced fibrosis in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2017;65(2):150–5. https://doi.org/10.1097/MPG.0000000000001614.

Article 
CAS 
PubMed 

Google Scholar
 

Yang S, Ye Z, Liu M, Zhang Y, Wu Q, Zhou C, et al. Association of serum uric acid with all-cause and cardiovascular mortality among adults with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf). 2023;98(1):49–58. https://doi.org/10.1111/cen.14810.

Article 
CAS 
PubMed 

Google Scholar
 

Kumar R, Porwal YC, Dev N, Kumar P, Chakravarthy S, Kumawat A. Association of high-sensitivity C-reactive protein (hs-CRP) with non-alcoholic fatty liver disease (NAFLD) in Asian Indians: a cross-sectional study. J Family Med Prim Care. 2020;9(1):390–4. https://doi.org/10.4103/jfmpc.jfmpc_887_19.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Chiang CH, Huang CC, Chan WL, Chen JW, Leu HB. The severity of non-alcoholic fatty liver disease correlates with high sensitivity C-reactive protein value and is independently associated with increased cardiovascular risk in healthy population. Clin Biochem. 2010;43(18):1399–404. https://doi.org/10.1016/j.clinbiochem.2010.09.003.

Article 
CAS 
PubMed 

Google Scholar
 

Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212–24. https://doi.org/10.1016/S0140-6736(20)32511-3.

Article 
CAS 
PubMed 

Google Scholar
 

Lian J, Fu J. Pioglitazone for NAFLD patients with prediabetes or type 2 diabetes mellitus: a meta-analysis. Front Endocrinol (Lausanne). 2021;12:615409. https://doi.org/10.3389/fendo.2021.615409.

Article 
PubMed 

Google Scholar
 

Karedath J, Javed H, Ahsan Talpur F, Lal B, Kumari A, Kivan H, et al. Effect of Vitamin E on Clinical Outcomes in Patients With Non-alcoholic Fatty Liver Disease: A Meta-Analysis. Cureus. 2022;14(12):e32764. https://doi.org/10.7759/cureus.32764.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lemoinne S, Friedman SL. New and emerging anti-fibrotic therapeutics entering or already in clinical trials in chronic liver diseases. Curr Opin Pharmacol. 2019;49:60–70. https://doi.org/10.1016/j.coph.2019.09.006.

Article 
CAS 
PubMed 

Google Scholar
 

Elhoseeny MM, Rageh F, Rezk SM, Othman AAA. Frequency and risk factors of metabolic associated fatty liver disease among medical students in Egypt. Sci Rep. 2025;15(1):13470. https://doi.org/10.1038/s41598-025-95753-w.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rensen SS, Slaats Y, Driessen A, Peutz-Kootstra CJ, Nijhuis J, Steffensen R, et al. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology. 2009;50(6):1809–17. https://doi.org/10.1002/hep.23228.

Article 
CAS 
PubMed 

Google Scholar
 

Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503–16. https://doi.org/10.1038/s41577-019-0168-x.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Thorgersen EB, Barratt-Due A, Haugaa H, Harboe M, Pischke SE, Nilsson PH, et al. The role of complement in liver injury, regeneration, and transplantation. Hepatology. 2019;70(2):725–36. https://doi.org/10.1002/hep.30508.

Article 
PubMed 

Google Scholar
 

Lazo M, Hernaez R, Bonekamp S, Kamel IR, Brancati FL, Guallar E, et al. Non-alcoholic fatty liver disease and mortality among US adults: prospective cohort study. BMJ. 2011;343:d6891. https://doi.org/10.1136/bmj.d6891.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Feng L, Zhao Y, Wang WL. Association between complement C3 and the prevalence of metabolic-associated fatty liver disease in a Chinese population: a cross-sectional study. BMJ Open. 2021;11(10):e051218. https://doi.org/10.1136/bmjopen-2021-051218.

Article 
PubMed 
PubMed Central 

Google Scholar
 

Xu C, Chen Y, Xu L, Miao M, Li Y, Yu C. Serum complement C3 levels are associated with nonalcoholic fatty liver disease independently of metabolic features in Chinese population. Sci Rep. 2016;6:23279. https://doi.org/10.1038/srep23279.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Han J, Zhang X. Complement component C3: a novel biomarker participating in the pathogenesis of non-alcoholic fatty liver disease. Front Med. 2021;8:653293. https://doi.org/10.3389/fmed.2021.653293.

Article 

Google Scholar
 

Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol. 2022;13:1017467. https://doi.org/10.3389/fimmu.2022.1017467.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brunt EM. Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(4):195–203. https://doi.org/10.1038/nrgastro.2010.21.

Article 
PubMed 

Google Scholar
 

Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28(4):360–9. https://doi.org/10.1055/s-0028-1091980.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Santiesteban-Lores LE, Carneiro MC, Isaac L, Bavia L. Complement system in alcohol-associated liver disease. Immunol Lett. 2021;236:37–50. https://doi.org/10.1016/j.imlet.2021.05.007.

Article 
CAS 
PubMed 

Google Scholar
 

Zhu C, Song H, Xu F, Yi W, Liu F, Liu X. Hepatitis B virus inhibits the expression of complement C3 and C4, in vitro and in vivo. Oncol Lett. 2018;15(5):7459–63. https://doi.org/10.3892/ol.2018.8223.

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li Y, Sha Y, Wang H, He L, Li L, Wen S, et al. Intracellular C3 prevents hepatic steatosis by promoting autophagy and very-low-density lipoprotein secretion. FASEB J. 2021;35(12):e22037. https://doi.org/10.1096/fj.202100856R.

Article 
CAS 
PubMed 

Google Scholar
 

Biewenga M, Farina Sarasqueta A, Tushuizen ME, de Jonge-Muller ESM, van Hoek B, Trouw LA. The role of complement activation in autoimmune liver disease. Autoimmun Rev. 2020;19(6):102534. https://doi.org/10.1016/j.autrev.2020.102534.

Article 
CAS 
PubMed 

Google Scholar
 

Zhuang L, Li Q, You W, Wen S, Chen T, Su J, et al. Complement C3 promotes islet beta-cell dedifferentiation by activating Wnt/beta-catenin pathway. iScience. 2024;27(10):111064. https://doi.org/10.1016/j.isci.2024.111064.

Spiga R, Marini MA, Mancuso E, Di Fatta C, Fuoco A, Perticone F, et al. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the NF-κB signaling pathway in HepG2 cells. Arterioscler Thromb Vasc Biol. 2017;37(6):1241–9. https://doi.org/10.1161/ATVBAHA.117.309128.

Article 
CAS 
PubMed 

Google Scholar
 

Chu CQ. Complement-targeted therapy for autoimmune diseases. Med Rev. 2023;3(6):521–5. https://doi.org/10.1515/mr-2023-0051.

Article 

Google Scholar
Â