Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27.
Alazem M, Lin N-S. Roles of plant hormones in the regulation of host–virus interactions. Mol Plant Pathol. 2015;16(5):529–40.
Denancé N, Sánchez-Vallet A, Goffner D, Molina A. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front plant sci. 2013;4:155.
Vlot AC, Dempsey DA, Klessig DF. Salicylic Acid, a Multifaceted Hormone to Combat Disease. Annu Rev Phytopathol. 2009;47:177–206.
Eckardt NA. The plant cell reviews dynamic aspects of plant hormone signaling and crosstalk. Plant Cell. 2015;27(1):1–2.
Caplan JL, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, Dinesh-Kumar SP. Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microbe. 2009;6(5):457–69.
Sorahinobar M, Safaie N, Moradi B. Salicylic acid seed priming enhanced resistance in wheat against Fusarium graminearum seedling blight. J Plant Biol. 2022;65(5):423–34.
Žádníková P, Wabnik K, Abuzeineh A, Gallemi M, Van Der Straeten D, Smith RS, et al. A model of differential growth-guided apical hook formation in plants. Plant Cell. 2016;28(10):2464–77.
Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, et al. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature. 2022;609(7927):611–5.
Llorente F, Muskett P, Sánchez-Vallet A, López G, Ramos B, Sánchez-Rodríguez C, et al. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi. Mol Plant. 2008;1(3):496–509.
Habets MEJ, Offringa R. PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytol. 2014;203(2):362–77.
Mutka AM, Fawley S, Tsao T, Kunkel BN. Auxin promotes susceptibility to Pseudomonas syringae via a mechanism independent of suppression of salicylic acid-mediated defenses. Plant J. 2013;74(5):746–54.
Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature. 2001;414(6861):271–6.
Su P, Zhao L, Li W, Zhao J, Yan J, Ma X, et al. Integrated metabolo-transcriptomics and functional characterization reveals that the wheat auxin receptor TIR1 negatively regulates defense against Fusarium graminearum. J Integr Plant Biol. 2021;63(2):340–52.
Fett WF, Osman SF, Dunn MF. Auxin production by plant-pathogenic Pseudomonads and Xanthomonads. Appl Environ Microbiol. 1987;53(8):1839–45.
Costacurta A, Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol. 1995;21(1):1–18.
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, et al. Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol. 2010;155(1):589–602.
Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Natl Acad Sci U S A. 2008;105(19):7100–5.
McClerklin SA, Lee SG, Harper CP, Nwumeh R, Jez JM, Kunkel BN. Indole-3-acetaldehyde dehydrogenase-dependent auxin synthesis contributes to virulence of Pseudomonas syringae strain DC3000. PLoS Pathog. 2018;14(1):e1006811.
Bindics J, Khan M, Uhse S, Kogelmann B, Baggely L, Reumann D, et al. Many ways to TOPLESS – manipulation of plant auxin signalling by a cluster of fungal effectors. New Phytol. 2022;236(4):1455–70.
Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol Plant Pathol. 2008;9(3):339–55.
Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, et al. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A. 2009;106(15):6416–21.
Zhou J, Wu S, Chen X, Liu C, Sheen J, Shan L, et al. The Pseudomonas syringae effector HopF2 suppresses Arabidopsis immunity by targeting BAK1. Plant Pathol. 2014;77(2):235–45.
Calderón Villalobos LIA, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, et al. A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol. 2012;8(5):477–85.
Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, Masson PH. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proc Natl Acad Sci U S A. 1998;95(25):15112–7.
Galweiler L, Guan C, Müller A, Wisman E, Mendgen K, Yephremov A, et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Sci. 1998;282(5397):2226–30
Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, et al. Phylogenetic characterization of transport protein superfamilies: superiority of superfamily tree programs over those based on multiple alignments. Microb Physiol. 2011;21(3–4):83–96.
Mansour NM, Sawhney M, Tamang DG, Vogl C, Saier MH Jr. The bile/arsenite/riboflavin transporter (BART) superfamily. FEBS J. 2007;274(3):612–29.
Luo K, Rocheleau H, Qi P-F, Zheng Y-L, Zhao H-Y, Ouellet T. Indole-3-acetic acid in Fusarium graminearum: identification of biosynthetic pathways and characterization of physiological effects. Fungal Biol. 2016;120(9):1135–45.
Petti C, Reiber K, Ali SS, Berney M, Doohan FM. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol. 2012;12(1):224.
Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, et al. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature. 2022;609(7927):616–21.
Kazan K, Manners JM. Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 2009;14(7):373–82.
Machado Wood AK, Panwar V, Grimwade-Mann M, Ashfield T, Hammond-Kosack KE, Kanyuka K. The vesicular trafficking system component MIN7 is required for minimizing Fusarium graminearum infection. J Exp Bot. 2021;72(13):5010–23.
Kidd BN, Kadoo NY, Dombrecht B, Tekeoglu M, Gardiner DM, Thatcher LF, et al. Auxin signaling and transport promote susceptibility to the root-infecting fungal pathogen Fusarium oxysporum in Arabidopsis. Mol Plant-Microbe Interact. 2011;24(6):733–48.
Maor R, Haskin S, Levi-Kedmi H, Sharon A. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol. 2004;70(3):1852–4.
Lahey KA, Yuan R, Burns JK, Ueng PP, Timmer LW, Chung K-R. Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Mol Plant-Microbe Interact. 2004;17(12):1394–401.
Jiang C-J, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, et al. Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant-Microbe Interact. 2012;26(3):287–96.
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science. 2006;312(5772):436–9.
Brauer EK, Rocheleau H, Balcerzak M, Pan Y, Fauteux F, Liu Z, et al. Transcriptional and hormonal profiling of Fusarium graminearum-infected wheat reveals an association between auxin and susceptibility. Physiol Mol Plant Pathol. 2019;107:33–9.
Haidoulis J, Nicholson P. Different effects of phytohormones on Fusarium head blight and Fusarium root rot resistance in Brachypodium distachyon. J Plant Interact. 2020;15(1):335–44.
Weijers D, Wagner D. Transcriptional responses to the auxin hormone. Annu Rev Phytopathol. 2016;67:539–74.
Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 2009;5(5):308–16.
Ma K-W, Ma W. Phytohormone pathways as targets of pathogens to facilitate infection. Plant Mol Biol. 2016;91(6):713–25.
Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell. 2013;25(2):744–61.
Nobuta K, Okrent RA, Stoutemyer M, Rodibaugh N, Kempema L, Wildermuth MC, et al. The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiol. 2007;144(2):1144–56.
Carrillo-Carrasco VP, Hernandez-Garcia J, Mutte SK, Weijers D. The birth of a giant: evolutionary insights into the origin of auxin responses in plants. EMBO J. 2023;42(6):e113018.
Galili G, Amir R, Fernie AR. The regulation of essential amino acid synthesis and accumulation in plants. Annu Rev Phytopathol. 2016;67:153–78.
Spoel SH, Koornneef A, Claessens SMC, Korzelius JmP, Van Pelt JA, Mueller MJ, et al. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell. 2003;15(3):760–70.
Bernsdorff F, Döring A-C, Gruner K, Schuck S, Bräutigam A, Zeier J. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell. 2016;28(1):102–29.
Hu S, Jin M, Xu Y, Wu Q, Jiang Q, Ma J, et al. Deacetylation of chitin oligomers by Fusarium graminearum polysaccharide deacetylase suppresses plant immunity. Mol Plant Pathol. 2023;24(12):1495–509.
Chen Q, Lei L, Liu C, Zhang Y, Xu Q, Zhu J, et al. Major facilitator superfamily transporter gene FgMFS1 is essential for Fusarium graminearum to deal with salicylic acid stress and for its pathogenicity towards wheat. Int J Mol Sci. 2021;22(16):8497.
Jia L-J, Tang H-Y, Wang W-Q, Yuan T-L, Wei W-Q, Pang B, et al. A linear nonribosomal octapeptide from Fusarium graminearum facilitates cell-to-cell invasion of wheat. Nat Commun. 2019;10(1):922.
Xu Q, Hu S, Jin M, Xu Y, Jiang Q, Ma J, et al. The N-terminus of a Fusarium graminearum-secreted protein enhances broad-spectrum disease resistance in plants. Mol Plant Pathol. 2022;23(12):1751–64.
Xu Q, Tang C, Wang X, Sun S, Zhao J, Kang Z, et al. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nat Commun. 2019;10(1):5571.