Kimble, H. J. The quantum internet. Nature 453, 1023 (2008).
Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).
Mao, Y. et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt. Express 26, 6010 (2018).
Yin, J. et al. Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501 (2020).
Kwiat, P. G. Hyper-entangled states. J. Mod. Opt. 44, 2173 (1997).
Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313 (2001).
Simon, C. & Poizat, J.-P. Creating single time-bin-entangled photon pairs. Phys. Rev. Lett. 94, 030502 (2005).
Tanzilli, S. et al. A photonic quantum information interface. Nature 437, 116 (2005).
Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140 (2017).
Ren, J.-G. et al. Ground-to-satellite quantum teleportation. Nature 549, 70 (2017).
Gisin, N. & Thew, R. Quantum communication. Nat. Photonics 1, 165 (2007).
Jacobs, B. C., Pittman, T. B. & Franson, J. D. Quantum relays and noise suppression using linear optics. Phys. Rev. A 66, 052307 (2002).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 (2001).
Azuma, K. et al. Quantum repeaters: from quantum networks to the quantum internet. Rev. Mod. Phys. 95, 045006 (2023).
Lodahl, P. Quantum-dot based photonic quantum networks. Quantum Sci. Technol. 3, 013001 (2017).
Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404 (2019).
Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829 (2022).
Huber, D. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat. Commun. 8, 15506 (2017).
Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).
Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217 (2010).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photonics 10, 340 (2016).
Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586 (2019).
Wolters, J. et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017).
Neuwirth, J. et al. Quantum dot technology for quantum repeaters: from entangled photon generation toward the integration with quantum memories. Mater. Quantum Technol. 1, 043001 (2021).
Thomas, S. E. et al. Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory. Sci. Adv. 10, eadi7346 (2024).
Lu, C.-Y. & Pan, J.-W. Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol. 16, 1294 (2021).
Yu, Y. et al. Telecom-band quantum dot technologies for long-distance quantum networks. Nat. Nanotechnol. 18, 1389 (2023).
Stevenson, R. M. et al. Quantum teleportation of laser-generated photons with an entangled-light-emitting diode. Nat. Commun. 4, 2859 (2013).
Nilsson, J. et al. Quantum teleportation using a light-emitting diode. Nat. Photonics 7, 311 (2013).
Huwer, J. et al. Quantum-dot-based telecommunication-wavelength quantum relay. Phys. Rev. Appl. 8, 024007 (2017).
Reindl, M. et al. All-photonic quantum teleportation using on-demand solid-state quantum emitters. Sci. Adv. 4, eaau1255 (2018).
Anderson, M. et al. Quantum teleportation using highly coherent emission from telecom C-band quantum dots. npj Quantum Inf. 6, 14 (2020).
Anderson, M. et al. Gigahertz-clocked teleportation of time-bin qubits with a quantum dot in the telecommunication C band. Phys. Rev. Appl. 13, 054052 (2020).
Basso Basset, F. et al. Entanglement swapping with photons generated on demand by a quantum dot. Phys. Rev. Lett. 123, 160501 (2019).
Zopf, M. et al. Entanglement swapping with semiconductor-generated photons violates Bell’s inequality. Phys. Rev. Lett. 123, 160502 (2019).
Basso Basset, F. et al. Quantum teleportation with imperfect quantum dots. npj Quantum Inf. 7, 7 (2021).
Gao, W. B. et al. Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013).
Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218 (2016).
Bennett, A. J., Patel, R. B., Nicoll, C. A., Ritchie, D. A. & Shields, A. J. Interference of dissimilar photon sources. Nat. Phys. 5, 715 (2009).
Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23 (2019).
Schimpf, C. et al. Quantum dots as potential sources of strongly entangled photons: perspectives and challenges for applications in quantum networks. Appl. Phys. Lett. 118, 100502 (2021).
You, X. et al. Quantum interference with independent single-photon sources over 300 km fiber. Adv. Photonics 4, 066003 (2022).
Santori, C., Fattal, D., Vuckovic, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594 (2002).
Ates, S. et al. Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009).
Gazzano, O. et al. Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013).
Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled In (Ga) As/(Al) GaAs quantum dots. Phys. Rev. B 65, 195315 (2002).
Trotta, R. et al. Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).
Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).
Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).
Rota, M. B. et al. A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot. eLight 4, 13 (2024).
Basso Basset, F. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021).
Basso Basset, F. et al. Daylight entanglement-based quantum key distribution with a quantum dot source. Quantum Sci. Technol. 8, 025002 (2023).
Jayakumar, H. et al. Deterministic photon pairs and coherent optical control of a single quantum dot. Phys. Rev. Lett. 110, 135505 (2013).
Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224 (2014).
Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 18, 799 (2019).
Schliwa, A., Winkelnkemper, M. & Bimberg, D. Few-particle energies versus geometry and composition of InxGa1−xAs/GaAs self-organized quantum dots. Phys. Rev. B 79, 075443 (2009).
Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).
Schöll, E. et al. Crux of using the cascaded emission of a three-level quantum ladder system to generate indistinguishable photons. Phys. Rev. Lett. 125, 233605 (2020).
Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575 (1997).
Rota, M. B., Basset, F. B., Tedeschi, D. & Trotta, R. Entanglement teleportation with photons from quantum dots: toward a solid-state based quantum network. IEEE J. Sel. Top. Quantum Electron. 26, 1 (2020).
Chuang, I. L. & Nielsen, M. A. Prescription for experimental determination of the dynamics of a quantum black box. J. Mod. Opt. 44, 2455 (1997).
Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259 (1995).
Valivarthi, R. et al. Quantum teleportation across a metropolitan fibre network. Nat. Photonics 10, 676 (2016).
Sun, Q.-C. et al. Quantum teleportation with independent sources and prior entanglement distribution over a network. Nat. Photonics 10, 671 (2016).
Valivarthi, R. et al. Teleportation systems toward a quantum internet. PRX Quantum 1, 020317 (2020).
Zhao, J. Enhancing quantum teleportation efficacy with noiseless linear amplification. Nat. Commun. 14, 4745 (2023).
Strobel, T. et al. Quantum teleportation with telecom photons from remote quantum emitters, arXiv preprint https://doi.org/10.48550/arXiv.2411.12904 (2024).
Kuhlmann, A. V. et al. Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015).
Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661 (2016).
Undeutsch, G. et al. Electric-field control of photon indistinguishability in cascaded decays in quantum dots. Nano Lett. 25, 7121 (2025).
Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. N. J. Phys. 20, 115003 (2018).
Ghosh, S. et al. Distinguishability of Bell states. Phys. Rev. Lett. 87, 277902 (2001).
Barbieri, M., Vallone, G., Mataloni, P. & De, F. Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007).
Calsamiglia, J. & Lütkenhaus, N. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B 72, 67 (2001).
Nielsen, M. A. and Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, 2010).
Knee, G. C., Bolduc, E., Leach, J. & Gauger, E. M. Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98, 062336 (2018).