Boistel R, Aubin T, Cloetens P, Langer M, Gillet B, Josset P, et al. Whispering to the deaf: communication by a frog without external vocal sac or tympanum in noisy environments. PLoS One. 2011;6(7):e22080.


Google Scholar
 

Manley GA. Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA. 2000;97(22):11736–43.


Google Scholar
 

Shen JX, Xu ZM, Yu ZL, Wang S, Zheng DZ, Fan SC. Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity. Nat Commun. 2011;2:342.


Google Scholar
 

Liu WR, Shen JX, Zhang YJ, Xu ZM, Qi Z, Xue MQ. Auditory sexual difference in the large odorous frog Odorrana graminea. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014;200(4):311–6.


Google Scholar
 

Wang TL, Li HD, Cui JG, Zhai XF, Shi HT, Wang JC. Auditory brainstem responses in the red-eared slider Trachemys scripta elegans (Testudoformes: Emydidae) reveal sexually dimorphic hearing sensitivity. J Comp Physiol A. 2019;205(6):847–54.


Google Scholar
 

Kastelein RA, van Schie R, Verboom WC, de Haan D. Underwater hearing sensitivity of a male and a female Steller sea lion (Eumetopias jubatus). J Acoust Soc Am. 2005;118(3 Pt 1):1820–9.


Google Scholar
 

Wang JC, Li HD, Wang TL, Chen B, Cui JG, Shi HT. Ontogenetic development of hearing sensitivity to airborne sound in the female red-eared slider, Trachemys scripta elegans. J Acoust Soc Am. 2021;149(2):819.


Google Scholar
 

Stanley JA, Caiger PE, Phelan B, Shelledy K, Mooney TA, Van Parijs SM. Ontogenetic variation in the auditory sensitivity of black sea bass (Centropristis striata) and the implications of anthropogenic sound on behavior and communication. J Exp Biol. 2020;223(Pt 13):jeb219683.


Google Scholar
 

Slade K, Plack CJ, Nuttall HE. The effects of age-related hearing loss on the brain and cognitive function. Trends Neurosci. 2020;43(10):810–21.


Google Scholar
 

Wolf SE, Swaddle JP, Cristol DA, Buchser WJ. Methylmercury exposure reduces the auditory brainstem response of zebra finches (Taeniopygia guttata). J Assoc Res Otolaryngol. 2017;18(4):569–79.


Google Scholar
 

Ingersoll MA, Malloy EA, Caster LE, Holland EM, Xu Z, Zallocchi M, Currier D, Liu H, He DZZ, Min J, et al. BRAF inhibition protects against hearing loss in mice. Sci Adv. 2020;6(49)eabd0561.

Larsen ON, Wahlberg M, Christensen-Dalsgaard J. Amphibious hearing in a diving bird, the great cormorant (Phalacrocorax carbo sinensis). J Exp Biol. 2020;223(Pt 6):jeb217265.


Google Scholar
 

Piniak WE, Mann DA, Harms CA, Jones TT, Eckert SA. Hearing in the juvenile Green Sea Turtle (Chelonia mydas): a comparison of underwater and aerial hearing using auditory evoked potentials. PLoS One. 2016;11(10):e0159711.


Google Scholar
 

Zeyl JN, Johnston CE. Amphibious auditory evoked potentials in four North American Testudines genera spanning the aquatic-terrestrial spectrum. J Comp Physiol A. 2015;201(10):1011–8.


Google Scholar
 

Zhang D, Cui J, Tang Y. Plasticity of peripheral auditory frequency sensitivity in Emei music frog. PLoS One. 2012;7(9):e45792.


Google Scholar
 

Yang P, Xue F, Cui J, Brauth SE, Tang Y, Fang G. Auditory sensitivity exhibits sexual dimorphism and seasonal plasticity in music frogs. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018;204(12):1029–44.


Google Scholar
 

Lucas JR, Freeberg TM, Krishnan A, Long GR. A comparative study of avian auditory brainstem responses: correlations with phylogeny and vocal complexity, and seasonal effects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2002;188(11–12):981–92.


Google Scholar
 

Gall MD, Salameh TS, Lucas JR. Songbird frequency selectivity and temporal resolution vary with sex and season. Proc Biol Sci. 2013;280(1751):20122296.


Google Scholar
 

Martínez AD, Acuña R, Figueroa V, Maripillan J, Nicholson B. Gap-junction channels dysfunction in deafness and hearing loss. Antioxid Redox Signal. 2009;11(2):309–22.


Google Scholar
 

Miranda JA, Wilczynski W. Female reproductive state influences the auditory midbrain response. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2009;195(4):341–9.


Google Scholar
 

Stiebler IB, Narins PM. Temperature-dependence of auditory nerve response properties in the frog. Hear Res. 1990;46(1–2):63–81.


Google Scholar
 

Zeyl JN, Love OP, Higgs DM. Condition-dependent auditory processing in the round goby (Neogobius melanostomus): links to sex, reproductive condition and female estrogen levels. J Exp Biol. 2013;216(Pt 6):1075–84.


Google Scholar
 

Lynch KS, Wilczynski W. Reproductive hormones modify reception of species-typical communication signals in a female anuran. Brain Behav Evol. 2008;71(2):143–50.


Google Scholar
 

Caras ML, Brenowitz E, Rubel EW. Peripheral auditory processing changes seasonally in Gambel’s white-crowned sparrow. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2010;196(8):581–99.


Google Scholar
 

Wysocki LE, Montey K, Popper AN. The influence of ambient temperature and thermal acclimation on hearing in a eurythermal and a stenothermal otophysan fish. J Exp Biol. 2009;212(19):3091–9.


Google Scholar
 

Sun X, Zhao L, Chen Q, Wang J, Cui J. Auditory sensitivity changes with diurnal temperature variation in little torrent frogs (Amolops torrentis). Bioacoustics. 2020. https://doi.org/10.1080/09524622.2019.1662845.


Google Scholar
 

Wang T, Yang J, Handong LI, Lei J, Shi H, Wang J. Seasonal variation of hearing sensitivity in the red-eared slider(Trachemys scripta elegans). Asian Herpetol Res. 2024;15(2):82–9.


Google Scholar
 

Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137(6 Suppl 1):1539S-1547S; discussion 1548S.


Google Scholar
 

Schweikhard ES, Ziegler CM. Amino acid secondary transporters: toward a common transport mechanism. Curr Top Membr. 2012;70:1–28.


Google Scholar
 

Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE. The origin of spontaneous activity in the developing auditory system. Nature. 2007;450(7166):50–5.


Google Scholar
 

Yamashita M. Potential role of neuroactive tryptophan metabolites in central fatigue: establishment of the fatigue circuit. Int J Tryptophan Res. 2020;13:1178646920936279.


Google Scholar
 

Wangemann P. K+ cycling and the endocochlear potential. Hear Res. 2002;165(1–2):1–9.


Google Scholar
 

Avan P, Le Gal S, Michel V, Dupont T, Hardelin JP, Petit C, et al. Otogelin, otogelin-like, and stereocilin form links connecting outer hair cell stereocilia to each other and the tectorial membrane. Proc Natl Acad Sci U S A. 2019;116(51):25948–57.


Google Scholar
 

Köppl C, Wilms V, Russell IJ, Nothwang HG. Evolution of endolymph secretion and endolymphatic potential generation in the vertebrate inner ear. Brain Behav Evol. 2018;92(1–2):1–31.


Google Scholar
 

Patuzzi R. Ion flow in stria vascularis and the production and regulation of cochlear endolymph and the endolymphatic potential. Hear Res. 2011;277(1–2):4–19.


Google Scholar
 

Jaime Tobón LM, Moser T. Ca(2+) regulation of glutamate release from inner hair cells of hearing mice. Proc Natl Acad Sci U S A. 2023;120(49):e2311539120.


Google Scholar
 

Zhang D, Ruan J, Peng S, Li J, Hu X, Zhang Y, et al. Synaptic-like transmission between neural axons and arteriolar smooth muscle cells drives cerebral neurovascular coupling. Nat Neurosci. 2024;27(2):232–48.


Google Scholar
 

Fan QQ, Meng FL, Fang R, Li GP, Zhao XL. Functions of Wnt signaling pathway in hair cell differentiation and regeneration. Yi Chuan. 2017;39(10):897–907.


Google Scholar
 

Rishikaysh P, Dev K, Diaz D, Qureshi WM, Filip S, Mokry J. Signaling involved in hair follicle morphogenesis and development. Int J Mol Sci. 2014;15(1):1647–70.


Google Scholar
 

Belintani Piatto V, Maria Goloni Bertollo E, Lúcia Sartorato E, Victor Maniglia J. Prevalence of the GJB2 mutations and the del(GJB6-D13S1830) mutation in Brazilian patients with deafness. Hear Res. 2004;196(1–2):87–93.


Google Scholar
 

BelintaniPiatto V, Vasques Moreira OA, Orate Silva MA, Victor Maniglia J, Coimbra Pereira M, Sartorato EL. Correlation between audiometric data and the 35delG mutation in ten patients. Braz J Otorhinolaryngol. 2007;73(6):777–83.


Google Scholar
 

Cesca F, Bettella E, Polli R, Leonardi E, Aspromonte MC, Sicilian B, et al. Frequency of Usher gene mutations in non-syndromic hearing loss: higher variability of the Usher phenotype. J Hum Genet. 2020;65(10):855–64.


Google Scholar
 

Chen Y, Wang Z, Jiang Y, Lin Y, Wang X, Wang Z, et al. Biallelic p. V37I variant in GJB2 is associated with increasing incidence of hearing loss with age. Genet Med. 2022;24(4):915–23.


Google Scholar
 

Mori K, Miyanohara I, Moteki H, Nishio SY, Kurono Y, Usami S. Novel mutation in GRXCR1 at DFNB25 lead to progressive hearing loss and dizziness. Ann Otol Rhinol Laryngol. 2015;124 Suppl 1:129s–34s.


Google Scholar
 

Ouyang XM, Xia XJ, Verpy E, Du LL, Pandya A, Petit C, et al. Mutations in the alternatively spliced exons of USH1C cause non-syndromic recessive deafness. Hum Genet. 2002;111(1):26–30.


Google Scholar
 

Sharma N, Kumari D, Panigrahi I, Khetarpal P. A systematic review of the monogenic causes of non-syndromic hearing loss (NSHL) and discussion of current diagnosis and treatment options. Clin Genet. 2023;103(1):16–34.


Google Scholar
 

Kim BJ, Kim DK, Han JH, Oh J, Kim AR, Lee C, et al. Clarification of glycosylphosphatidylinositol anchorage of OTOANCORIN and human OTOA variants associated with deafness. Hum Mutat. 2019;40(5):525–31.


Google Scholar
 

Laurent S, Gehrig C, Nouspikel T, Amr SS, Oza A, Murphy E, et al. Molecular characterization of pathogenic OTOA gene conversions in hearing loss patients. Hum Mutat. 2021;42(4):373–7.


Google Scholar
 

Askari M, Moradi Z, Mohammadi M, Lagzian M, Asgharzade S. Prediction and interpretation of rare missense variant in OTOG associated with hearing loss. Genomics. 2021;113(4):2793–9.


Google Scholar
 

Yu S, Choi HJ, Lee JS, Lee HJ, Rim JH, Choi JY, et al. A novel early truncation mutation in OTOG causes prelingual mild hearing loss without vestibular dysfunction. Eur J Med Genet. 2019;62(1):81–4.


Google Scholar
 

Ito T, Li X, Kurima K, Choi BY, Wangemann P, Griffith AJ. Slc26a4-insufficiency causes fluctuating hearing loss and stria vascularis dysfunction. Neurobiol Dis. 2014;66:53–65.


Google Scholar
 

Mey K, Muhamad AA, Tranebjaerg L, Rendtorff ND, Rasmussen SH, Bille M, et al. Association of SLC26A4 mutations, morphology, and hearing in pendred syndrome and NSEVA. Laryngoscope. 2019;129(11):2574–9.


Google Scholar
 

Ryu N, Sagong B, Park HJ, Kim MA, Lee KY, Choi JY, et al. Screening of the SLC17A8 gene as a causative factor for autosomal dominant non-syndromic hearing loss in Koreans. BMC Med Genet. 2016;17:6.


Google Scholar
 

Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet. 2008;83(2):278–92.


Google Scholar
 

Ichinose A, Moteki H, Hattori M, Nishio SY, Usami S. Novel mutations in LRTOMT associated with moderate progressive hearing loss in autosomal recessive inheritance. Ann Otol Rhinol Laryngol. 2015;124(Suppl 1):142s–7s.


Google Scholar
 

Ahmed ZM, Masmoudi S, Kalay E, Belyantseva IA, Mosrati MA, Collin RW, et al. Mutations of LRTOMT, a fusion gene with alternative reading frames, cause nonsyndromic deafness in humans. Nat Genet. 2008;40(11):1335–40.


Google Scholar
 

van der Ende SR, Meyers BS, Capasso JE, Sasongko M, Yonekawa Y, Pihlblad M, et al. Severe familial exudative vitreoretinopathy, congenital hearing loss, and developmental delay in a child with biallelic variants in FZD4. JAMA Ophthalmol. 2022;140(9):889–93.


Google Scholar
 

Suzuki K, Taniguchi K, Iida S. The acceleration of Na+, K+-ATPase activity by ATP and ATP analogues. J Biol Chem. 1987;262(24):11752–7.


Google Scholar
 

Lopina OD. Na+, K+-ATPase: structure, mechanism, and regulation. Membr Cell Biol. 2000;13(6):721–44.


Google Scholar
 

Roenn CP, Li M, Schack VR, Forster IC, Holm R, Toustrup-Jensen MS, et al. Functional consequences of the CAPOS mutation E818K of Na(+), K(+)-ATPase. J Biol Chem. 2019;294(1):269–80.


Google Scholar
 

Marshall KC, Xiong HG. Modulation of amino acid neurotransmitter actions by other neurotransmitters: some examples. Can J Physiol Pharmacol. 1991;69(7):1115–22.


Google Scholar
 

Hurley LM, Hall IC. Context-dependent modulation of auditory processing by serotonin. Hear Res. 2011;279(1–2):74–84.


Google Scholar
 

Klinke R. Neurotransmission in the inner ear. Hear Res. 1986;22:235–43.


Google Scholar
 

Cherian KE, Kapoor N, Mathews SS, Paul TV. Endocrine glands and hearing: auditory manifestations of various endocrine and metabolic conditions. Indian J Endocrinol Metab. 2017;21(3):464–9.


Google Scholar
 

Frisina RD, Bazard P, Bauer M, Pineros J, Zhu X, Ding B. Translational implications of the interactions between hormones and age-related hearing loss. Hear Res. 2021;402:108093.


Google Scholar
 

Maney DL, Pinaud R. Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Front Neuroendocrinol. 2011;32(3):287–302.


Google Scholar
 

Baugh AT, Bee MA, Gall MD. The paradox of hearing at the lek: auditory sensitivity increases after breeding in female gray treefrogs (Hyla chrysoscelis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019;205(4):629–39.


Google Scholar
 

Gall MD, Bee MA, Baugh AT. The difference a day makes: breeding remodels hearing, hormones and behavior in female cope’s gray treefrogs (Hyla chrysoscelis). Horm Behav. 2019;108:62–72.


Google Scholar
 

Forlano PM, Sisneros JA, Rohmann KN, Bass AH. Neuroendocrine control of seasonal plasticity in the auditory and vocal systems of fish. Front Neuroendocrinol. 2015;37:129–45.


Google Scholar
 

Perelmuter JT, Hom KN, Mohr RA, Demis L, Kim S, Chernenko A, et al. Testosterone treatment mimics seasonal downregulation of dopamine innervation in the auditory system of female midshipman fish. Integr Comp Biol. 2021;61(1):269–82.


Google Scholar
 

Sisneros JA, Forlano PM, Deitcher DL, Bass AH. Steroid-dependent auditory plasticity. Science. 2004;305(5682):404–7.


Google Scholar
 

Delhez A, Lefebvre P, Péqueux C, Malgrange B, Delacroix L. Auditory function and dysfunction: estrogen makes a difference. Cell Mol Life Sci. 2020;77(4):619–35.


Google Scholar
 

Yang H, Li J, Sun X, Li W, Wang Y, Huang C. The association of sex steroid hormone concentrations with hearing loss: a cross-sectional study. Acta Otolaryngol. 2023;143(7):582–8.


Google Scholar
 

Aloufi N, Heinrich A, Marshall K, Kluk K. Sex differences and the effect of female sex hormones on auditory function: a systematic review. Front Hum Neurosci. 2023;17:1077409.


Google Scholar
 

Sisneros JA. Adaptive hearing in the vocal plainfin midshipman fish: getting in tune for the breeding season and implications for acoustic communication. Integr Zool. 2009;4(1):33–42.


Google Scholar
 

Terry J, Field E, Neuman-Lee LA. Assessment of glucocorticoids, sex steroids, and innate immunity in wild red-eared slider turtles (Trachemys scripta elegans). Gen Comp Endocrinol. 2023;339:114288.


Google Scholar
 

Brenowitz EA, Remage-Healey L. It takes a seasoned bird to be a good listener: communication between the sexes. Curr Opin Neurobiol. 2016;38:12–7.


Google Scholar
 

Zhu W, Liu LS, Wang XG, Gao XY, Jiang JP, Wang B. Transcriptomics reveals the molecular processes of light-induced rapid darkening of the non-obligate cave dweller Oreolalax rhodostigmatus (Megophryidae, Anura) and their genetic basis of pigmentation strategy. BMC Genomics. 2018;19(1):422.


Google Scholar
 

Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20.


Google Scholar
 

Brian Simison W, Parham JF, Papenfuss TJ, Lam AW, Henderson JB. An annotated chromosome-level reference genome of the red-eared slider turtle (Trachemys scripta elegans). Genome Biol Evol. 2020;12(4):456–62.


Google Scholar
 

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.


Google Scholar
 

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.


Google Scholar
 

Liao Y, Smyth GK, Shi W. The subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013;41(10):e108.


Google Scholar
 

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.


Google Scholar
 

Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.


Google Scholar
 

Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.


Google Scholar
Â