Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to cyanobacteria. Elife 2, https://doi.org/10.7554/eLife.01102 (2013).

Soo, R. M. et al. An expanded genomic representation of the phylum cyanobacteria. Genome Biol. Evol. 6, 1031–1045 (2014).


Google Scholar
 

Boden, J. S., Konhauser, K. O., Robbins, L. J. & Sánchez-Baracaldo, P. Timing the evolution of antioxidant enzymes in cyanobacteria. Nat. Commun. 12, 4742 (2021).


Google Scholar
 

Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. Biol. Sci. 288, 20210675 (2021).


Google Scholar
 

Wang, C. L. et al. Archean to early Paleoproterozoic iron formations document a transition in iron oxidation mechanisms. Geochim. Cosmochim. Acta 343, 286–303 (2023).


Google Scholar
 

Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).


Google Scholar
 

Chen, G. et al. Reconstructing Earth’s atmospheric oxygenation history using machine learning. Nat. Commun. 13, 5862 (2022).


Google Scholar
 

Planavsky, N. J. et al. Evolution of the structure and impact of Earth’s biosphere. Nat. Rev. Earth Env. 2, 123–139 (2021).


Google Scholar
 

Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).


Google Scholar
 

Schirrmeister, B. E., de Vos, J. M., Antonelli, A. & Bagheri, H. C. Evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Proc. Natl Acad. Sci. USA 110, 1791–1796 (2013).


Google Scholar
 

Schirrmeister, B. E., Gugger, M. & Donoghue, P. C. J. Cyanobacteria and the great oxidation event: evidence from genes and fossils. Palaeontology 58, 769–785 (2015).

Schirrmeister, B. E., Antonelli, A. & Bagheri, H. C. The origin of multicellularity in cyanobacteria. BMC Evol. Biol. 11, 45 (2011).


Google Scholar
 

Blank, C. E. & Sánchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria – a key to understanding the rise in atmospheric oxygen. Geobiology 8, 1–23 (2010).


Google Scholar
 

Hammerschmidt, K., Landan, G., Domingues Kümmel Tria, F., Alcorta, J. & Dagan, T. The order of trait emergence in the evolution of cyanobacterial multicellularity. Genome Biol. Evol. 13, https://doi.org/10.1093/gbe/evaa249 (2021).

Guéguen, N. & Maréchal, E. Origin of cyanobacterial thylakoids via a non-vesicular glycolipid phase transition and their impact on the Great Oxygenation Event. J. Exp. Bot. 73, 2721–2734 (2022).


Google Scholar
 

Castenholz, R. W. Cyanobacteria. Oxygenic photosynthetic bacteria. In Bergey’s Manual of Systematic Bacteriology, (eds, Garrity, G., Boone, D. R. & Castenholz, R. W.) 473–599 (Springer-Verlag, 2001).

Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).


Google Scholar
 

Urrejola, C. et al. Loss of filamentous multicellularity in Cyanobacteria: the extremophile Gloeocapsopsis sp. Strain UTEX B3054 retained multicellular features at the genomic and behavioral levels. J. Bacteriol. 202, https://doi.org/10.1128/JB.00514-19 (2020).

Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).


Google Scholar
 

Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).


Google Scholar
 

Herrero, A., Stavans, J. & Flores, E. The multicellular nature of filamentous heterocyst-forming cyanobacteria. FEMS Microbiol. Rev. 40, 831–854 (2016).


Google Scholar
 

Nieves-Morión, M., Flores, E. Whitehouse, M. J., Thomen, A. & Foster, R. A. Single-cell measurements of fixation and intercellular exchange of C and N in the filaments of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. Mbio. 12, https://doi.org/10.1128/mBio.01314-21 (2021).

Wolk, C. P. Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J. Bacteriol. 96, 2138–2143 (1968).


Google Scholar
 

Wolk, C. P., Austin, S. M., Bortins, J. & Galonsky, A. Autoradiographic localization of 13N after fixation of 13N-labeled nitrogen gas by a heterocyst-forming blue-green alga. J. Cell Biol. 61, 440–453 (1974).


Google Scholar
 

Mariscal, V. Cell-cell joining proteins in heterocyst-forming cyanobacteria. In The Cell Biology of Cyanobacteria, (eds, Flores, E., Herrero, A.) 293–304 (Caister Academic Press, 2014).

Mullineaux, C. W. & Nürnberg, D. J. Tracing the path of a prokaryotic paracrine signal. Mol. Microbiol. 94, 1208–1212 (2014).


Google Scholar
 

Flores, E., Herrero, A., Forchhammer, K. & Maldener, I. Septal junctions in filamentous heterocyst-forming cyanobacteria. Trends Microbiol. 24, 79–82 (2016).


Google Scholar
 

Kieninger, A. K., Forchhammer, K. & Maldener, I. A nanopore array in the septal peptidoglycan hosts gated septal junctions for cell-cell communication in multicellular cyanobacteria. Int. J. Med. Microbiol. 309, 151303 (2019).


Google Scholar
 

Weiss, G. L., Kieninger, A. K., Maldener, I., Forchhammer, K. & Pilhofer, M. Structure and function of a bacterial gap junction analog. Cell 178, 374–384.e315 (2019).


Google Scholar
 

Merino-Puerto, V., Mariscal, V., Mullineaux, C. W., Herrero, A. & Flores, E. Fra proteins influencing filament integrity, diazotrophy and localization of septal protein SepJ in the heterocyst-forming cyanobacterium Anabaena sp. Mol. Microbiol. 75, 1159–1170 (2010).


Google Scholar
 

Merino-Puerto, V. et al. FraC/FraD-dependent intercellular molecular exchange in the filaments of a heterocyst-forming cyanobacterium, Anabaena sp. Mol. Microbiol. 82, 87–98 (2011).


Google Scholar
 

Arévalo, S. & Flores, E. Pentapeptide-repeat, cytoplasmic-membrane protein HglK influences the septal junctions in the heterocystous cyanobacterium Anabaena. Mol. Microbiol. 113, 794–806 (2020).


Google Scholar
 

Springstein, B. L. et al. A novel septal protein of multicellular heterocystous cyanobacteria is associated with the divisome. Mol. Microbiol. 113, 1140–1154 (2020).


Google Scholar
 

Arévalo, S. & Flores, E. Heterocyst septa contain large nanopores that are influenced by the Fra proteins in the filamentous cyanobacterium Anabaena sp. Strain PCC 7120. J. Bacteriol. 203, https://doi.org/10.1128/JB.00081-21 (2021).

Flores, E. et al. Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 189, 3884–3890 (2007).


Google Scholar
 

Mullineaux, C. W. et al. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J. 27, 1299–1308 (2008).


Google Scholar
 

Mariscal, V., Herrero, A., Nenninger, A., Mullineaux, C. W. & Flores, E. Functional dissection of the three-domain SepJ protein joining the cells in cyanobacterial trichomes. Mol. Microbiol. 79, 1077–1088 (2011).


Google Scholar
 

Mariscal, V., Nürnberg, D. J., Herrero, A., Mullineaux, C. W. & Flores, E. Overexpression of sepJ alters septal morphology and heterocyst pattern regulated by diffusible signals in Anabaena. Mol. Microbiol. 101, 968–981 (2016).


Google Scholar
 

Omairi-Nasser, A., Mariscal, V., Austin, J. R. 2nd & Haselkorn, R. Requirement of Fra proteins for communication channels between cells in the filamentous nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120. Proc. Natl Acad. Sci. USA 112, E4458–E4464 (2015).


Google Scholar
 

Stucken, K. et al. The smallest known genomes of multicellular and toxic cyanobacteria: Comparison, minimal gene sets for linked traits and the evolutionary implications. PLoS One 5, e9235 (2010).


Google Scholar
 

Springstein, B. L. et al. Identification and characterization of novel filament-forming proteins in cyanobacteria. Sci. Rep. 10, 1894 (2020).


Google Scholar
 

Black, T. A., Cai, Y. & Wolk, C. P. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol. Microbiol. 9, 77–84 (1993).


Google Scholar
 

Kim, Y. et al. Structure of transcription factor HetR required for heterocyst differentiation in cyanobacteria. Proc. Natl Acad. Sci. USA 108, 10109–10114 (2011).


Google Scholar
 

Zhang, J. Y., Chen, W. L. & Zhang, C. C. hetR and patS, two genes necessary for heterocyst pattern formation, are widespread in filamentous non-heterocyst-forming cyanobacteria. Microbiology 155, 1418–1426 (2009).


Google Scholar
 

Zhang, W. et al. A gene cluster that regulates both heterocyst differentiation and pattern formation in Anabaena sp. strain PCC 7120. Mol. Microbiol. 66, 1429–1443 (2007).


Google Scholar
 

Elhai, J. & Khudyakov, I. Ancient association of cyanobacterial multicellularity with the regulator hetR and an RGSGR pentapeptide-containing protein (PatX). Mol. Microbiol. 110, 931–954 (2018).


Google Scholar
 

Antonaru, L. A. & Nürnberg, D. J. Role of PatS and cell type on the heterocyst spacing pattern in a filamentous branching cyanobacterium. FEMS Microbiol. Lett. 364, https://doi.org/10.1093/femsle/fnx154 (2017).

Tomitani, A., Knoll, A. H., Cavanaugh, C. M. & Ohno, T. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc. Natl Acad. Sci. USA 103, 5442–5447 (2006).


Google Scholar
 

Strunecký, O., Ivanova, A. P. & Mareš, J. An updated classification of cyanobacterial orders and families based on phylogenomic and polyphasic analysis. J. Phycol. 59, 12–51 (2023).


Google Scholar
 

Enzingmuller-Bleyl, T. C. et al. On the trail of iron uptake in ancestral cyanobacteria on early Earth. Geobiology 20, 776–789 (2022).


Google Scholar
 

Sánchez-Baracaldo, P., Ridgwell, A. & Raven, J. A. A Neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).


Google Scholar
 

Chen, M. Y. et al. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J. 15, 211–227 (2020).


Google Scholar
 

Alcorta, J., Alarcón-Schumacher, T., Salgado, O. & Díez, B. Taxonomic novelty and distinctive genomic features of hot spring cyanobacteria. Front. Genet. 11, https://doi.org/10.3389/fgene.2020.568223 (2020).

Rockwell, N. C. & Lagarias, J. C. Cyanobacteriochromes from Gloeobacterales provide new insight into the diversification of cyanobacterial photoreceptors. J. Mol. Biol. 168313, https://doi.org/10.1016/j.jmb.2023.168313 (2023).

Velázquez-Suárez, C., Valladares, A., Luque, I. & Herrero, A. The role of Mre Factors and cell division in peptidoglycan growth in the multicellular cyanobacterium. Mbio 13, https://doi.org/10.1128/mbio.01165-22 (2022).

Nürnberg, D. J. et al. Branching and intercellular communication in the section V cyanobacterium Mastigocladus laminosus, a complex multicellular prokaryote. Mol. Microbiol. 91, 935–949 (2014).


Google Scholar
 

Nürnberg, D. J. et al. Intercellular diffusion of a fluorescent sucrose analog via the septal junctions in a filamentous cyanobacterium. Mbio 6. https://doi.org/10.1128/mbio.02109-14 (2015).

Arévalo, S. et al. Coexistence of communicating and non-communicating cells in the filamentous cyanobacterium. Msphere 6. https://doi.org/10.1128/msphere.01091-20 (2021).

Lehner, J. et al. Prokaryotic multicellularity: a nanopore array for bacterial cell communication. FASEB J. 27, 2293–2300 (2013).


Google Scholar
 

Mandakovic, D. et al. CyDiv, a conserved and novel filamentous cyanobacterial cell division protein involved in septum localization. Front. Microbiol. 7, 94 (2016).


Google Scholar
 

Donia, M. S. et al. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc. Natl Acad. Sci. USA 108, E1423–E1432 (2011).


Google Scholar
 

Sánchez-Baracaldo, P., Bianchini, G., Di Cesare, A., Callieri, C. & Chrismas, N. A. M. Insights into the evolution of Picocyanobacteria and phycoerythrin genes (mpeBA and cpeBA). Front. Microbiol. 10. https://doi.org/10.3389/fmicb.2019.00045 (2019).

Boden, J. S., Zhong, J., Anderson, R. E. & Stüeken, E. E. Timing the evolution of phosphorus-cycling enzymes through geological time using phylogenomics. Nat. Commun. 15, 3703 (2024).


Google Scholar
 

Bianchini, G., Hagemann, M. & Sánchez-Baracaldo, P. Stochastic character mapping, bayesian model selection, and biosynthetic pathways shed new light on the evolution of habitat preference in cyanobacteria. Syst. Biol. https://doi.org/10.1093/sysbio/syae025 (2024).

Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl Acad. Sci. USA 114, E7737–E7745 (2017).


Google Scholar
 

Tice, M. M., Thornton, D. C. O., Pope, M. C., Olszewski, T. D. & Gong, J. Archean microbial mat communities. Annu. Rev. Earth. Planet. Sci. 39, 297–319 (2011).


Google Scholar
 

Sánchez-Baracaldo, P., Hayes, P. K. & Blank, C. E. Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3, 145–165 (2005).


Google Scholar
 

Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).


Google Scholar
 

Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234 (2007).


Google Scholar
 

Ozaki, K., Thompson, K. J., Simister, R. L., Crowe, S. A. & Reinhard, C. T. Anoxygenic photosynthesis and the delayed oxygenation of Earth’s atmosphere. Nat. Commun. 10, 3026 (2019).


Google Scholar
 

Schad, M., Konhauser, K. O., Sánchez-Baracaldo, P., Kappler, A. & Bryce, C. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient earth? Free Radic. Biol. Med. 140, 154–166 (2019).


Google Scholar
 

Garcia-Pichel, F. et al. Timing the evolutionary advent of cyanobacteria and the later Great Oxidation Event using gene phylogenies of a sunscreen. Mbio. 10, https://doi.org/10.1128/mbio.00561-19 (2019).

Zheng, Z. et al. An amidase is required for proper intercellular communication in the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl Acad. Sci. USA 114, E1405–E1412 (2017).


Google Scholar
 

Khudyakov, I., Gladkov, G. & Elhai, J. Inactivation of three RG(S/T)GR pentapeptide-containing negative regulators of HetR results in lethal differentiation of PCC 7120. Life 10. https://doi.org/10.3390/life10120326 (2020).

Arbel-Goren, R. et al. Robust, coherent, and synchronized circadian clock-controlled oscillations along filaments. Elife 10. https://doi.org/10.7554/eLife.64348 (2021).

Shih, P. M. et al. Improving the coverage of the Cyanobacterial phylum using diversity-driven genome sequencing. Proc. Natl Acad. Sci. USA 110, 1053–1058 (2013).


Google Scholar
 

Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).


Google Scholar
 

Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–591 (2017).


Google Scholar
 

Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).


Google Scholar
 

Lopez-Maury, L., Florencio, F. J. & Reyes, J. C. Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp strain PCC 6803. J. Bacteriol. 185, 5363–5371 (2003).


Google Scholar
 

Hoang, D. T. C. O., Haeseler, A. V., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2017).


Google Scholar
 

Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).


Google Scholar
 

Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).


Google Scholar
 

Black, K., Buikema, W. J. & Haselkorn, R. The hglK gene is required for localization of heterocyst-specific glycolipids in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 177, 6440–6448 (1995).


Google Scholar
 

Escudero, L., Mariscal, V. & Flores, E. Functional dependence between septal protein SepJ from Anabaena sp. strain PCC 7120 and an amino acid ABC-type uptake transporter. J. Bacteriol. 197, 2721–2730 (2015).


Google Scholar
 

Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).


Google Scholar
 

Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).


Google Scholar
 

Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).


Google Scholar
 

Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).


Google Scholar
 

Tria, F. D. K., Landan, G. & Dagan, T. Phylogenetic rooting using minimal ancestor deviation. Nat. Ecol. Evol. 1, 0193 (2017).


Google Scholar
 

Bianchini, G. & Sánchez-Baracaldo, P. TreeViewer: flexible, modular software to visualise and manipulate phylogenetic trees. Ecol. Evol. 14, e10873 (2024).


Google Scholar
 

Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLOS Biol. 4, 699–710 (2006).


Google Scholar
 

Golubic, S. & Lee, S. J. Early Cyanobacterial fossil record: preservation, palaeoenvironments and identification. Eur. J. Phycol. 34, 339–348 (1999).


Google Scholar
 

Sergeev, V. N., Gerasimenko, L. M. & Zavarzin, G. A. The Proterozoic history and present state of cyanobacteria. Microbiol 71, 623–637 (2002).


Google Scholar
 

Golubic, S., Sergeev, V. N. & Knoll, A. H. Mesoproterozoic Archaeoellipsoides: akinetes of heterocystous cyanobacteria. Lethaia 28, 285–298 (1995).


Google Scholar
 

Sims, A. P., Mann, D. G. & Medlin, L. K. Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45, 361–402 (2006).


Google Scholar
 

Foster, R. A. et al. Nitrogen fixation and transfer in open ocean diatom-cyanobacterial symbioses. ISME J. 5, 1484–1493 (2011).


Google Scholar
 

Cornejo-Castillo, F. M. et al. Cyanobacterial symbionts diverged in the late Cretaceous towards lineage-specific nitrogen fixation factories in single-celled phytoplankton. Nat. Commun. 7, 11071 (2016).


Google Scholar
 

Bown, P. R. & Young, J. R. Techniques. In: Calcareous nannofossil biostratigraphy (ed.Bown, P. R.) 16–28 (Chapman and Hall, London, 1998). https://doi.org/10.1007/978-94-011-4902-0_2.

Bekker, A. et al. Dating the rise of atmospheric oxygen. Geochim. Cosmochim. Ac 68, A780–A780 (2004).


Google Scholar
 

Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billiion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).


Google Scholar
 

Bosak, T., Knoll, A. H. & Petroff, A. P. The meaning of stromatolites. Ann. Rev. Earth Planet. Sci. 41, 21–44 (2013).


Google Scholar
 

Hofmann, H. J. Precambrian microflora, Belcher Islands, Canada – significance and systematics. J. Paleontol. 50, 1040–1073 (1976).


Google Scholar
 

Boden, J. S., Grego, M., Bolhuis, H. & Sanchez-Baracaldo, P. Draft genome sequences of three filamentous cyanobacteria isolated from brackish habitats. J. Genomics 9, 20–25 (2021).


Google Scholar
 

Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).


Google Scholar
 

Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-Cell sequencing. J. Comput. Biol. 19, 455–477 (2012).


Google Scholar
 

Chrismas, N. A. M., Barker, G., Anesio, A. M. & Sanchez-Baracaldo, P. Genomic mechanisms for cold tolerance and production of exopolysaccharides in the Arctic cyanobacterium Phormidesmis priestleyi BC1401. BMC Genomics 17, https://doi.org/10.1186/s12864-016-2846-4 (2016).

Mulkidjanian, A. Y. et al. The cyanobacterial genome core and the origin of photosynthesis. Proc. Natl Acad. Sci. USA 103, 13126–13131 (2006).


Google Scholar
 

Markowitz, V. M. et al. IMG: The integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–D122 (2012).


Google Scholar
 

Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).


Google Scholar
 

Orakov, A. et al. GUNC: detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 22, 178 (2021).


Google Scholar
 

McLachlan, J. Some considerations of the growth of marine algae in artificial media. Can. J. Microbiol. 10, 769–782 (1964).


Google Scholar
 

Goldman, J. C. & McCarthy, J. J. Steady state growth and ammonium uptake of a fast-growing marine diatom 1. Limnol. Oceanogr. 23, 695–703 (1978).


Google Scholar
 

de Pedro, M. A., Quintela, J. C., Höltje, J. V. & Schwarz, H. Murein segregation in Escherichia coli. J. Bacteriol. 179, 2823–2834 (1997).


Google Scholar
 

Nieves-Morion, M., Mullineaux, C. W. & Flores, E. Molecular diffusion through Cyanobacterial septal junctions. Mbio 8, https://doi.org/10.1128/mbio.01756-16 (2017).

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).


Google Scholar
 

Nieves-Morión, M. et al. Specific glucoside transporters influence septal structure and function in the filamentous, heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 199, https://doi.org/10.1128/jb.00876-00816 (2017).

Boden, J. et al. Supplementary Dataset for Manuscript Entitled ‘Evolution of Multicellularity Genes in the Lead Up to the Great Oxidation Event. https://doi.org/10.17605/OSF.IO/8BXAR (2025).

Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30. https://doi.org/10.1016/j.tim.2021.05.008 (2021).