Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B: Biol. Sci. 281, 20142103 (2014).

Article 

Google Scholar
 

Reum, J. C., Blanchard, J. L., Holsman, K. K., Aydin, K. & Punt, A. E. Species-specific ontogenetic diet shifts attenuate trophic cascades and lengthen food chains in exploited ecosystems. Oikos 128, 1051–1064 (2019).

Article 

Google Scholar
 

Petchey, O. L., Beckerman, A. P., Riede, J. O. & Warren, P. H. Size, foraging, and food web structure. Proc. Natl. Acad. Sci. 105, 4191–4196 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blanchard, J. L., Heneghan, R. F., Everett, J. D., Trebilco, R. & Richardson, A. J. From bacteria to whales: using functional size spectra to model marine ecosystems. Trends Ecol. Evol. 32, 174–186 (2017).

Article 
PubMed 

Google Scholar
 

Heneghan, R. F., Hatton, I. A. & Galbraith, E. D. Climate change impacts on marine ecosystems through the lens of the size spectrum. Emerg. Top. Life Sci. 3, 233–243 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lindeman, R. L. The trophic-dynamic aspect of ecology. Bull. Math. Biol. 53, 167–191 (1991).

Article 

Google Scholar
 

Ducrotoy, J.-P., Elliott, M. & de Jonge, V. N. The North Sea. Mar. Pollut. Bull. 41, 5–23 (2000).

Article 
CAS 

Google Scholar
 

Petchey, O. L., Brose, U. & Rall, B. C. Predicting the effects of temperature on food web connectance. Philos. Trans. R. Soc. B: Biol. Sci. 365, 2081–2091 (2010).

Article 

Google Scholar
 

Schneider, F. D., Scheu, S. & Brose, U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol. Lett. 15, 436–443 (2012).

Article 
PubMed 

Google Scholar
 

Wang, S. & Brose, U. Biodiversity and ecosystem functioning in food webs: the vertical diversity hypothesis. Ecol. Lett. 21, 9–20 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).

Article 

Google Scholar
 

Fath, B. D., Scharler, U. M., Ulanowicz, R. E. & Hannon, B. Ecological network analysis: network construction. Ecol. Model. 208, 49–55 (2007).

Article 

Google Scholar
 

Hunsicker, M. E. et al. Functional responses and scaling in predator–prey interactions of marine fishes: contemporary issues and emerging concepts. Ecol. Lett. 14, 1288–1299 (2011).

Article 
PubMed 

Google Scholar
 

Goerner, S., Fiscus, D. & Fath, B. Using energy network science (ENS) to connect resilience with the larger story of systemic health and development. Émerg.: Complex. Organ. 17, 1–21 (2015).


Google Scholar
 

O’Gorman, E. J. et al. A simple model predicts how warming simplifies wild food webs. Nat. Clim. Change 9, 611–616 (2019).

Article 

Google Scholar
 

Kortsch, S. et al. Food-web structure varies along environmental gradients in a high-latitude marine ecosystem. Ecography 42, 295–308 (2019).

Article 

Google Scholar
 

IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2022).

Nakazawa, T., Ushio, M. & Kondoh, M. In Advances in Ecological Research. 45, 269-302 (Elsevier, 2011).

Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Frelat, R. et al. Food web structure and community composition: a comparison across space and time in the North Sea. Ecography 2022, 5945 (2022).

Article 

Google Scholar
 

Flanagan, P. H., Jensen, O. P., Morley, J. W. & Pinsky, M. L. Response of marine communities to local temperature changes. Ecography 42, 214–224 (2019).

Article 

Google Scholar
 

Pecuchet, L. et al. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. Glob. Change Biol. 26, 4894–4906 (2020).

Article 

Google Scholar
 

Gulev, S. K. et al. Changing state of the climate system. https://doi.org/10.1017/9781009157896.004 (2021).

Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).

Article 
PubMed 

Google Scholar
 

Boyce, D. G., Frank, K. T., Worm, B. & Leggett, W. C. Spatial patterns and predictors of trophic control in marine ecosystems. Ecol. Lett. 18, 1001–1011 (2015).

Article 
PubMed 

Google Scholar
 

Lynam, C. P. et al. Interaction between top-down and bottom-up control in marine food webs. Proc. Natl. Acad. Sci. 114, 1952–1957 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Daufresne, M., Lengfellner, K. & Sommer, U. Global warming benefits the small in aquatic ecosystems. Proc. Natl. Acad. Sci. 106, 12788–12793 (2009).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cheung, W. W. et al. Shrinking of fish exacerbates the impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 254–258 (2013).

Article 
MathSciNet 

Google Scholar
 

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

Article 

Google Scholar
 

Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. change 1, 401–406 (2011).

Article 

Google Scholar
 

Coghlan, A. R. et al. Mean reef fish body size decreases towards warmer waters. Ecol. Lett. 27, e14375 (2024).

Article 
PubMed 

Google Scholar
 

Capuzzo, E. et al. A decline in primary production in the North Sea over 25 years, associated with reductions in zooplankton abundance and fish stock recruitment. Glob. change Biol. 24, e352–e364 (2018).

Article 

Google Scholar
 

Howarth, L. M. et al. Effects of bottom trawling and primary production on the composition of biological traits in benthic assemblages. Mar. Ecol. Prog. Ser. 602, 31–48 (2018).

Article 
CAS 

Google Scholar
 

Pauly, D. & Palomares, M.-L. Fishing down the marine food web: it is far more pervasive than we thought. Bull. Mar. Sci. 76, 197–212 (2005).


Google Scholar
 

Hsieh, C. -h, Yamauchi, A., Nakazawa, T. & Wang, W.-F. Fishing effects on age and spatial structures undermine population stability of fishes. Aquat. Sci. 72, 165–178 (2010).

Article 

Google Scholar
 

Berkeley, S. A., Hixon, M. A., Larson, R. J. & Love, M. S. Fisheries sustainability via protection of age structure and spatial distribution of fish populations. Fisheries 29, 23–32 (2004).

Article 

Google Scholar
 

Báez, J. C., Gimeno, L. & Real, R. North Atlantic Oscillation and fisheries management during global climate change. Rev. Fish. Biol. Fish. 31, 319–336 (2021).

Article 

Google Scholar
 

Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).

Article 

Google Scholar
 

Perkins, D. M. et al. Consistent predator-prey biomass scaling in complex food webs. Nat. Commun. 13, 4990 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gauzens, B. et al. fluxweb: An R package to easily estimate energy fluxes in food webs. Methods Ecol. Evol. 10, 270–279 (2019).

Article 

Google Scholar
 

Brose, U., Williams, R. J. & Martinez, N. D. Allometric scaling enhances stability in complex food webs. Ecol. Lett. 9, 1228–1236 (2006).

Article 
PubMed 

Google Scholar
 

Thompson, M. S., Couce, E., Schratzberger, M. & Lynam, C. P. Climate change affects the distribution of diversity across marine food webs. Glob. Change Biol. 29, 6606–6619 (2023).

Article 
CAS 

Google Scholar
 

Riede, J. O. et al. Stepping in Elton’s footprints: a general scaling model for body masses and trophic levels across ecosystems. Ecol. Lett. 14, 169–178 (2011).

Article 
PubMed 

Google Scholar
 

Thompson, M. S. et al. Fish functional groups of the North Atlantic and Arctic Oceans. Earth Syst. Sci. Data Discuss. 2024, 1–29 (2024).


Google Scholar
 

Otto, S. B., Rall, B. C. & Brose, U. Allometric degree distributions facilitate food-web stability. Nature 450, 1226–1229 (2007).

Article 
CAS 
PubMed 

Google Scholar
 

Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232 (2010).

Article 
PubMed 

Google Scholar
 

Jennings, S. & Warr, K. J. Smaller predator-prey body size ratios in longer food chains. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 270, 1413–1417 (2003).

Article 

Google Scholar
 

Pauly, D. Gasping Fish and Panting Squids: Oxygen, Temperature and the Growth of Water-breathing Animals. (International Ecology Institute, 2019).

Forster, J. & Hirst, A. G. The temperature-size rule emerges from ontogenetic differences between growth and development rates. Funct. Ecol. 26, 483–492 (2012).

Article 

Google Scholar
 

Baudron, A. R., Needle, C. L., Rijnsdorp, A. D. & Tara Marshall, C. Warming temperatures and smaller body sizes: synchronous changes in growth of North Sea fishes. Glob. change Biol. 20, 1023–1031 (2014).

Article 

Google Scholar
 

Kuparinen, A. et al. Fish age at maturation is influenced by temperature independently of growth. Oecologia 167, 435–443 (2011).

Article 
PubMed 

Google Scholar
 

Neuheimer, A. B. & Grønkjær, P. Climate effects on size-at-age: growth in warming waters compensates for earlier maturity in an exploited marine fish. Glob. Change Biol. 18, 1812–1822 (2012).

Article 

Google Scholar
 

Wootton, H. F., Morrongiello, J. R., Schmitt, T. & Audzijonyte, A. Smaller adult fish size in warmer water is not explained by elevated metabolism. Ecol. Lett. 25, 1177–1188 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Goldenberg, J., Bisschop, K., D’Alba, L. & Shawkey, M. D. The link between body size, colouration and thermoregulation and their integration into ecogeographical rules: a critical appraisal in light of climate change. Oikos 2022, e09152 (2022).

Article 

Google Scholar
 

Tirsgaard, B., Behrens, J. W. & Steffensen, J. F. The effect of temperature and body size on metabolic scope of activity in juvenile Atlantic cod Gadus morhua L. Comp. Biochem. Physiol. Part A: Mol. Integr. Physiol. 179, 89–94 (2015).

Article 
CAS 

Google Scholar
 

Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. science 308, 1912–1915 (2005).

Article 
CAS 
PubMed 

Google Scholar
 

Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241 (2006).

Article 
PubMed 

Google Scholar
 

Cheung, W. W. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish. Fish. 10, 235–251 (2009).

Article 

Google Scholar
 

Fernandes, J. A. et al. Modelling the effects of climate change on the distribution and production of marine fishes: accounting for trophic interactions in a dynamic bioclimate envelope model. Glob. change Biol. 19, 2596–2607 (2013).

Article 

Google Scholar
 

Reum, J. C., Holsman, K. K., Aydin, K. Y., Blanchard, J. L. & Jennings, S. Energetically relevant predator–prey body mass ratios and their relationship with predator body size. Ecol. evolution 9, 201–211 (2019).

Article 

Google Scholar
 

Ortiz, E., Ramos-Jiliberto, R. & Arim, M. Prey selection along a predator’s body size gradient evidences the role of different trait-based mechanisms in food web organization. Plos one 18, e0292374 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Blanchard, J. L. et al. Do climate and fishing influence size-based indicators of the Celtic Sea fish community structure? ICES J. Mar. Sci. 62, 405–411 (2005).

Article 

Google Scholar
 

Agnetta, D. et al. Erosion of fish trophic position: an indirect effect of fishing on food webs elucidated by stable isotopes. Philos. Trans. R. Soc. B: Biol. Sci. 379, 20230167 (2024).

Article 
CAS 

Google Scholar
 

Genner, M. J. et al. Body size-dependent responses of a marine fish assemblage to climate change and fishing over a century-long scale. Glob. Change Biol. 16, 517–527 (2010).

Article 

Google Scholar
 

Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Indic. 98, 442–452 (2019).

Article 

Google Scholar
 

Wood, M. V., Carvalho, F. M. & Castello, L. Fishing shrinks the size structure of exploited coral reef fishes in Brazil. Fish. Res. 275, 107029 (2024).

Article 

Google Scholar
 

Olafsdottir, A. H. et al. Changes in weight-at-length and size-at-age of mature Northeast Atlantic mackerel (Scomber scombrus) from 1984 to 2013: effects of mackerel stock size and herring (Clupea harengus) stock size. ICES J. Mar. Sci. 73, 1255–1265 (2016).

Article 

Google Scholar
 

Shackell, N. L., Frank, K. T., Fisher, J. A., Petrie, B. & Leggett, W. C. Decline in top predator body size and changing climate alter trophic structure in an oceanic ecosystem. Proc. R. Soc. B: Biol. Sci. 277, 1353–1360 (2010).

Article 

Google Scholar
 

Mollet, F. M., Poos, J. J., Dieckmann, U. & Rijnsdorp, A. D. Evolutionary impact assessment of the North Sea plaice fishery. Can. J. Fish. Aquat. Sci. 73, 1126–1137 (2016).

Article 

Google Scholar
 

Jennings, S., Pinnegar, J. K., Polunin, N. V. & Warr, K. J. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser. 226, 77–85 (2002).

Article 

Google Scholar
 

Liang, C. & Pauly, D. Fisheries impacts on China’s coastal ecosystems: unmasking a pervasive ‘fishing down’effect. PLoS One 12, e0173296 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Jennings, S. & Kaiser, M. J. In Advances in Marine Biology. 34, 201–352 (Elsevier, 1998).

Halpern, B. S. et al. A global map of human impact on marine ecosystems. science 319, 948–952 (2008).

Article 
CAS 
PubMed 

Google Scholar
 

McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

Article 
CAS 

Google Scholar
 

Bondavalli, C. & Bodini, A. How interaction strength affects the role of functional and redundant connections in food webs. Ecol. Complex. 20, 97–106 (2014).

Article 

Google Scholar
 

Van Baalen, M., Křivan, V., van Rijn, P. C. & Sabelis, M. W. Alternative food, switching predators, and the persistence of predator-prey systems. Am. Nat. 157, 512–524 (2001).

Article 
PubMed 

Google Scholar
 

Albouy, C. et al. From projected species distribution to food-web structure under climate change. Glob. change Biol. 20, 730–741 (2014).

Article 

Google Scholar
 

Coghlan, A. R. et al. Community size structure varies with predator–prey size relationships and temperature across Australian reefs. Ecol. Evol. 12, e8789 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Pinnegar, J. K. (ed). Fisheries & Aquaculture Science Centre for Environment. (2019).

Good, S. et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 12, 720 (2020).

Article 

Google Scholar
 

Donlon, C. J. et al. 2012, The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of the Environment. https://doi.org/10.1016/j.rse.2010.10.017 (2011).

Stark J. D., Donlon C. J., Martin M. J. & McCulloch M. E., OSTIA: an operational, high resolution, real-time, global sea surface temperature analysis system., Oceans 07 IEEE Aberdeen, conference proceedings. Marine challenges: coastline to deep sea. (Aberdeen, Scotland. IEEE, 2007).

Zanzi, A.; Holmes, S. Fisheries data from DCF Fishing Effort Regimes data calls. European Commission, Joint Research Centre (JRC). PID: http://data.europa.eu/89h/9f8002cc-c6fc-4adb-86cd-466f935a7bda (2017).

Forsyth, P. J. & Kay, J. A. The economic implications of North Sea oil revenues. Fisc. Stud. 1, 1–28 (1980).

Article 

Google Scholar
 

Engelhard, G. H. et al. Forage fish, their fisheries, and their predators: who drives whom? ICES J. Mar. Sci. 71, 90–104 (2014).

Article 

Google Scholar
 

Rutterford, L. A., Genner, M. J., Engelhard, G. H., Simpson, S. D. & Hunter, E. Fishing impacts on age structure may conceal environmental drivers of body size in exploited fish populations. ICES J. Mar. Sci. 80, 848–860 (2023).

Article 

Google Scholar
 

ICES. (ed). International Council for the Exploration of the Sea. (1997).

A language and environment for statistical computing. R Foundation for Statistical Computing (2017).

Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. Maps: Draw Geographical Maps. R package version 3.4.2. https://doi.org/10.32614/CRAN.package.maps (2023).