Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

Article 
ADS 

Google Scholar
 

Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

Article 
ADS 
MathSciNet 

Google Scholar
 

Ishito, K. et al. Truly chiral phonons in α-HgS. Nat. Phys. 19, 35–39 (2022).

Article 

Google Scholar
 

Ueda, H. et al. Chiral phonons in quartz probed by X-rays. Nature 618, 946–950 (2023).

Article 
ADS 

Google Scholar
 

Oishi, E., Fujii, Y. & Koreeda, A. Selective observation of enantiomeric chiral phonons in α-quartz. Phys. Rev. B 109, 104306 (2024).

Article 
ADS 

Google Scholar
 

Chen, H. et al. Chiral phonon diode effect in chiral crystals. Nano Lett. 22, 1688–1693 (2022).

Article 
ADS 

Google Scholar
 

Hamada, M., Minamitani, E., Hirayama, M. & Murakami, S. Phonon angular momentum induced by the temperature gradient. Phys. Rev. Lett. 121, 175301 (2018).

Article 
ADS 

Google Scholar
 

Kim, K. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023).

Article 
ADS 

Google Scholar
 

Ohe, K. et al. Chirality-induced selectivity of phonon angular momenta in chiral quartz crystals. Phys. Rev. Lett. 132, 056302 (2024).

Article 
ADS 

Google Scholar
 

Schaack, G. Magnetic-field dependent phonon states in paramagnetic CeF3. Solid State Commun. 17, 505–509 (1975).

Article 
ADS 

Google Scholar
 

Schaack, G. Observation of circularly polarized phonon states in an external magnetic field. J. Phys. C: Solid State Phys. 9, L297 (1976).

Article 
ADS 

Google Scholar
 

Cheng, B. et al. A large effective phonon magnetic moment in a Dirac semimetal. Nano Lett. 20, 5991–5996 (2020).

Article 
ADS 

Google Scholar
 

Baydin, A. et al. Magnetic control of soft chiral phonons in PbTe. Phys. Rev. Lett. 128, 075901 (2022).

Article 
ADS 

Google Scholar
 

Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

Article 

Google Scholar
 

Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

Article 
ADS 

Google Scholar
 

Hernandez, F. G. G. et al. Observation of interplay between phonon chirality and electronic band topology. Sci. Adv. 9, eadj4074 (2023).

Article 

Google Scholar
 

Jo, D., Go, D., Choi, G.-M. & Lee, H.-W. Spintronics meets orbitronics: emergence of orbital angular momentum in solids. npj Spintronics 2, 19 (2024).

Article 

Google Scholar
 

Seifert, T. S. et al. Time-domain observation of ballistic orbital-angular-momentum currents with giant relaxation length in tungsten. Nat. Nanotechnol. 18, 1132–1138 (2023).

Article 
ADS 

Google Scholar
 

Choi, Y.-G. et al. Observation of the orbital Hall effect in a light metal Ti. Nature 619, 52–56 (2023).

Article 
ADS 

Google Scholar
 

Lyalin, I., Alikhah, S., Berritta, M., Oppeneer, P. M. & Kawakami, R. K. Magneto-optical detection of the orbital Hall effect in chromium. Phys. Rev. Lett. 131, 156702 (2023).

Article 
ADS 

Google Scholar
 

Rothschild, A. et al. Generation of spin currents by the orbital Hall effect in Cu and Al and their measurement by a Ferris-wheel ferromagnetic resonance technique at the wafer level. Phys. Rev. B 106, 144415 (2022).

Article 
ADS 

Google Scholar
 

Xu, Y. et al. Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments. Nat. Commun. 15, 2043 (2024).

Article 
ADS 

Google Scholar
 

Go, D. et al. Orbital pumping by magnetization dynamics in ferromagnets. Phys. Rev. B 111, L140409 (2025).

Article 
ADS 

Google Scholar
 

Komiyama, H. & Murakami, S. Universal features of canonical phonon angular momentum without time-reversal symmetry. Phys. Rev. B 103, 214302 (2021).

Article 
ADS 

Google Scholar
 

Hayashi, H., Go, D., Haku, S., Mokrousov, Y. & Ando, K. Observation of orbital pumping. Nat. Electron. 7, 646–652 (2024).

Article 

Google Scholar
 

Go, D., Jo, D., Lee, H.-W., Kläui, M. & Mokrousov, Y. Orbitronics: orbital currents in solids. EPL 135, 37001 (2021).

Article 
ADS 

Google Scholar
 

Salemi, L. & Oppeneer, P. M. First-principles theory of intrinsic spin and orbital Hall and Nernst effects in metallic monoatomic crystals. Phys. Rev. Mater. 6, 095001 (2022).

Article 

Google Scholar
 

Kikkawa, T. et al. Observation of nuclear-spin Seebeck effect. Nat. Commun. 12, 4356 (2021).

Article 
ADS 

Google Scholar
 

Zhong, J. et al. Abnormal phonon angular momentum due to off-diagonal elements in the density matrix induced by a temperature gradient. Phys. Rev. B 107, 125147 (2023).

Article 
ADS 

Google Scholar
 

Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

Article 

Google Scholar
 

Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

Article 

Google Scholar
 

Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

Article 
ADS 

Google Scholar
 

Yokouchi, T., Ikeda, Y., Morimoto, T. & Shiomi, Y. Giant magnetochiral anisotropy in Weyl semimetal WTe2 induced by diverging Berry curvature. Phys. Rev. Lett. 130, 136301 (2023).

Article 
ADS 

Google Scholar
 

Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

Article 
ADS 

Google Scholar
 

Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).

Article 
ADS 

Google Scholar
 

Niimi, Y. & Otani, Y. Reciprocal spin Hall effects in conductors with strong spin–orbit coupling: a review. Rep. Prog. Phys. 78, 124501 (2015).

Article 
ADS 

Google Scholar
 

Wang, H. L. et al. Scaling of spin Hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Phys. Rev. Lett. 112, 197201 (2014).

Article 
ADS 

Google Scholar
 

Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to applications. J. Phys. Condens. Matter 26, 343202 (2014).

Article 

Google Scholar
 

Du, C., Wang, H., Yang, F. & Hammel, P. C. Systematic variation of spin-orbit coupling with d-orbital filling: large inverse spin Hall effect in 3d transition metals. Phys. Rev. B 90, 140407 (2014).

Article 
ADS 

Google Scholar
 

Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

Article 
ADS 

Google Scholar
 

Hayashi, H. et al. Observation of long-range orbital transport and giant orbital torque. Commun. Phys. 6, 32 (2023).

Article 

Google Scholar
 

Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

Article 
ADS 

Google Scholar
 

Wang, T.-C., Chen, T.-Y., Wu, C.-T., Yen, H.-W. & Pai, C.-F. Comparative study on spin-orbit torque efficiencies from W/ferromagnetic and W/ferrimagnetic heterostructures. Phys. Rev. Mater. 2, 014403 (2018).

Article 

Google Scholar
 

Sui, X. et al. Giant enhancement of the intrinsic spin Hall conductivity in beta-tungsten via substitutional doping. Phys. Rev. B 96, 241105 (2017).

Article 
ADS 

Google Scholar
 

Anastassakis, E., Burstein, E., Maradudin, A. A. & Minnick, R. Morphic effects—III. Effects of an external magnetic field on the long wavelength optical phonons. J. Phys. Chem. Solids 33, 519–531 (1972).

Article 
ADS 

Google Scholar
 

Gonze, X., Charlier, J.-C., Allan, D. C. & Teter, M. P. Interatomic force constants from first principles: the case of α-quartz. Phys. Rev. B 50, 13035–13038 (1994).

Article 
ADS 

Google Scholar
 

Strauch, D. & Dorner, B. Lattice dynamics of alpha-quartz. I. Experiment. J. Phys. Condens. Matter 5, 6149 (1993).

Article 
ADS 

Google Scholar
 

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

Article 

Google Scholar
 

Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

Article 
ADS 

Google Scholar
Â