Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

Article 
CAS 
ADS 

Google Scholar
 

Halperin, B. I. & Jain, J. K. Fractional Quantum Hall Effects: New Developments (World Scientific, 2020).

Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

Article 
CAS 
ADS 

Google Scholar
 

Andreev, A. F. & Lifshits, I. M. Quantum theory of defects in crystals. Zh. Eksp. Teor. Fiz. 56, 2057–2068 (1969).

CAS 

Google Scholar
 

Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

Article 
CAS 
ADS 

Google Scholar
 

Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).

Article 
CAS 
ADS 

Google Scholar
 

Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

CAS 

Google Scholar
 

Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).


Google Scholar
 

Lozovik, Y. E. & Yudson, V. I. Feasibility of superfluidity of paired spatially separated electrons and holes: a new superconductivity mechanism. JETP Lett. 22, 274–276 (1975).

ADS 

Google Scholar
 

Pogrebinsky, M. B. Mutual drag of carriers in a semiconductor-insulator-semiconductor system. Fiz. Tekh. Poluprovodn. 11, 637–644 (1977).


Google Scholar
 

Liu, X. et al. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 375, 205–209 (2022).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Li, J. I. A. et al. Pairing states of composite fermions in double-layer graphene. Nat. Phys. 15, 898–903 (2019).

Article 
CAS 

Google Scholar
 

Liu, X. et al. Interlayer fractional quantum Hall effect in a coupled graphene double layer. Nat. Phys. 15, 893–897 (2019).

Article 
CAS 
ADS 

Google Scholar
 

Zhang, N. J. et al. Excitons in the fractional quantum Hall effect. Nature 637, 327–332 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

Article 
CAS 

Google Scholar
 

Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

Article 
CAS 

Google Scholar
 

Nguyen, P. X. et al. Perfect Coulomb drag in a dipolar excitonic insulator. Science 388, 274–278 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Qi, R. et al. Perfect Coulomb drag and exciton transport in an excitonic insulator. Science 388, 278–283 (2025).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

Article 
ADS 

Google Scholar
 

Meisel, M. W. Supersolid 4He: an overview of past searches and future possibilities. Phys. B Condens. Matter 178, 121–128 (1992).

Article 
CAS 
ADS 

Google Scholar
 

Vu, D. & Das Sarma, S. Excitonic phases in a spatially separated electron-hole ladder model. Phys. Rev. B 108, 235158 (2023).

Article 
CAS 
ADS 

Google Scholar
 

Hu, Z. & Yang, K. Exciton crystal melting and destruction by disorder in a bilayer quantum Hall system with a total filling factor of one. Phys. Rev. B 110, 195307 (2024).

Article 
CAS 
ADS 

Google Scholar
 

Chui, S. T., Wang, N. & Wan, C. Y. Quantum exciton solid in bilayer two-dimensional electron-hole systems. Phys. Rev. B 102, 125420 (2020).

Article 
CAS 
ADS 

Google Scholar
 

Yoshioka, D. & MacDonald, A. H. Double quantum well electron-hole systems in strong magnetic fields. J. Phys. Soc. Jpn 59, 4211–4214 (1990).

Article 
ADS 

Google Scholar
 

Joglekar, Y. N., Balatsky, A. V. & Sarma, S. D. Wigner supersolid of excitons in electron-hole bilayers. Phys. Rev. B 74, 233302 (2006).

Article 
ADS 

Google Scholar
 

Zarenia, M., Neilson, D. & Peeters, F. M. Inhomogeneous phases in coupled electron-hole bilayer graphene sheets: charge density waves and coupled Wigner crystals. Sci. Rep. 7, 11510 (2017).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar
 

De Palo, S., Rapisarda, F. & Senatore, G. Excitonic condensation in a symmetric electron-hole bilayer. Phys. Rev. Lett. 88, 206401 (2002).

Article 
PubMed 
ADS 

Google Scholar
 

Chen, X. M. & Quinn, J. J. Excitonic charge-density-wave instability of spatially separated electron-hole layers in strong magnetic fields. Phys. Rev. Lett. 67, 895–898 (1991).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Yang, K. Dipolar excitons, spontaneous phase coherence, and superfluid-insulator transition in bilayer quantum Hall systems at ν = 1. Phys. Rev. Lett. 87, 056802 (2001).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Conti, S. et al. Chester supersolid of spatially indirect excitons in double-layer semiconductor heterostructures. Phys. Rev. Lett. 130, 057001 (2023).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Böning, J., Filinov, A. & Bonitz, M. Crystallization of an exciton superfluid. Phys. Rev. B 84, 075130 (2011).

Article 
ADS 

Google Scholar
 

Szymański, J., Świerkowski, L. & Neilson, D. Correlations in coupled layers of electrons and holes. Phys. Rev. B 50, 11002–11007 (1994).

Article 
ADS 

Google Scholar
 

Astrakharchik, G. E., Boronat, J., Kurbakov, I. L. & Lozovik, Y. E. Quantum phase transition in a two-dimensional system of dipoles. Phys. Rev. Lett. 98, 060405 (2007).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Nguyen, R. Q. et al. Bilayer excitons in the Laughlin fractional quantum Hall state. Preprint at https://doi.org/10.48550/arXiv.2410.24208 (2024).

Lozovik, Y. E., Ogarkov, S. L. & Sokolik, A. A. Condensation of electron-hole pairs in a two-layer graphene system: correlation effects. Phys. Rev. B 86, 045429 (2012).

Article 
ADS 

Google Scholar
 

Perali, A., Neilson, D. & Hamilton, A. R. High-temperature superfluidity in double-bilayer graphene. Phys. Rev. Lett. 110, 146803 (2013).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Lozovik, Y. E., Volkov, S. Y. & Willander, M. Structural properties of the condensate in two-dimensional mesoscopic systems of strongly correlated excitons. JETP Lett. 79, 473–478 (2004).

Article 
CAS 
ADS 

Google Scholar
 

Mitra, K., Williams, C. J. & Sá de Melo, C. A. R. Hexatic, Wigner crystal, and superfluid phases of dipolar bosons. Preprint at https://doi.org/10.48550/arXiv.0903.4655 (2009).

Zhou, Y. et al. Bilayer Wigner crystals in a transition metal dichalcogenide heterostructure. Nature 595, 48–52 (2021).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Zeng, Y. et al. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 22, 175–179 (2023).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Abergel, D. S. L., Rodriguez-Vega, M., Rossi, E. & Das Sarma, S. Interlayer excitonic superfluidity in graphene. Phys. Rev. B 88, 235402 (2013).

Article 
ADS 

Google Scholar
 

Wang, Z. et al. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 574, 76–80 (2019).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Kellogg, M., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Vanishing Hall resistance at high magnetic field in a double-layer two-dimensional electron system. Phys. Rev. Lett. 93, 036801 (2004).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Kellogg, M. J. Evidence for Excitonic Superfluidity in a Bilayer Two-Dimensional Electron System. PhD thesis, California Institute of Technology (2005).

Tutuc, E., Shayegan, M. & Huse, D. A. Counterflow measurements in strongly correlated GaAs hole bilayers: evidence for electron-hole pairing. Phys. Rev. Lett. 93, 036802 (2004).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Wiersma, R. D. et al. Activated transport in the separate layers that form the νT = 1 exciton condensate. Phys. Rev. Lett. 93, 266805 (2004).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Nandi, D., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Exciton condensation and perfect Coulomb drag. Nature 488, 481–484 (2012).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-WSe2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Champagne, A. R., Finck, A. D. K., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Charge imbalance and bilayer two-dimensional electron systems at νT = 1. Phys. Rev. B 78, 205310 (2008).

Article 
ADS 

Google Scholar
 

Clarke, W. R. et al. Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance. Phys. Rev. B 71, 081304 (2005).

Article 
ADS 

Google Scholar
 

Joglekar, Y. N. & MacDonald, A. H. Bias-voltage-induced phase transition in bilayer quantum Hall ferromagnets. Phys. Rev. B 65, 235319 (2002).

Article 
ADS 

Google Scholar
 

Andrei, E. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Ma, M. K. et al. Thermal and quantum melting phase diagrams for a magnetic-field-induced Wigner solid. Phys. Rev. Lett. 125, 036601 (2020).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Gervais, G. et al. Competition between a fractional quantum Hall liquid and bubble and Wigner crystal phases in the third Landau level. Phys. Rev. Lett. 93, 266804 (2004).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Tsui, Y.-C. et al. Direct observation of a magnetic-field-induced Wigner crystal. Nature 628, 287–292 (2024).

Article 
CAS 
PubMed 
ADS 

Google Scholar
 

Hatke, A. T. et al. Wigner solid pinning modes tuned by fractional quantum Hall states of a nearby layer. Sci. Adv. 5, eaao2848 (2019).

Article 
CAS 
PubMed 
PubMed Central 
ADS 

Google Scholar