Srama, R. et al. The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 114, 465–518 (2004).

Article 
ADS 

Google Scholar
 

Waite, J. H. et al. The Cassini Ion and Neutral Mass Spectrometer (INMS) investigation. Space Sci. Rev. 114, 113–231 (2004).

Article 
ADS 

Google Scholar
 

Esposito, L. W. et al. The Cassini Ultraviolet Imaging Spectrograph investigation. Space Sci. Rev. 115, 299–361 (2004).

Article 
ADS 

Google Scholar
 

Waite Jr, J. H. et al. Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460, 487–490 (2009).

Article 
ADS 

Google Scholar
 

Waite, J. H. et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356, 155–159 (2017).

Article 
ADS 

Google Scholar
 

Postberg, F. et al. Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).

Article 
ADS 

Google Scholar
 

Postberg, F., Schmidt, J., Hillier, J., Kempf, S. & Srama, R. A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011).

Article 
ADS 

Google Scholar
 

Postberg, F. et al. Macromolecular organic compounds from the depths of Enceladus. Nature 558, 564–568 (2018).

Article 
ADS 

Google Scholar
 

Postberg, F. et al. Detection of phosphates originating from Enceladus’s ocean. Nature 618, 489–493 (2023).

Article 
ADS 

Google Scholar
 

Khawaja, N. et al. Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Mon. Not. R. Astron. Soc. 489, 5231–5243 (2019).

Article 
ADS 

Google Scholar
 

Hansen, C. J. et al. The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations. Icarus 344, 113461 (2020).

Article 

Google Scholar
 

Iess, L. et al. The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).

Article 
ADS 

Google Scholar
 

Hsu, H.-W. et al. Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).

Article 
ADS 

Google Scholar
 

Sekine, Y. et al. High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015).

Article 
ADS 

Google Scholar
 

Thomas, P. C. et al. Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).

Article 
ADS 

Google Scholar
 

Choblet, G. et al. Powering prolonged hydrothermal activity inside Enceladus. Nat. Astron. 1, 841–847 (2017).

Article 
ADS 

Google Scholar
 

Peter, J. S., Nordheim, T. A. & Hand, K. P. Detection of HCN and diverse redox chemistry in the plume of Enceladus. Nat. Astron. 8, 164–173 (2024).

Article 
ADS 

Google Scholar
 

Ershova, A. et al. Modeling the Enceladus dust plume based on in situ measurements performed with the Cassini Cosmic Dust Analyzer. Astron. Astrophys. 689, A114 (2024).

Article 

Google Scholar
 

Kempf, S. et al. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 195–223 (Univ. of Arizona Press, 2018).

Srama, R. et al. The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space J. 2, 3–16 (2011).

Article 
ADS 

Google Scholar
 

Linti, S. et al. Cassini’s CDA observes a variety of dust populations just outside Saturn’s main rings. Mon. Not. R. Astron. Soc. 529, 3121–3139 (2024).

Article 
ADS 

Google Scholar
 

Nölle, L. et al. Radial compositional profile of Saturn’s E ring indicates substantial space weathering effects. Mon. Not. R. Astron. Soc. 527, 8131–8139 (2024).

Article 
ADS 

Google Scholar
 

Postberg, F. et al. The E-ring in the vicinity of Enceladus. II. Probing the moon’s interior—the composition of E-ring particles. Icarus 193, 438–454 (2008).

Article 
ADS 

Google Scholar
 

Klenner, F. et al. Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Commun. Mass Spectrom. 33, 1751–1760 (2019).

Article 
ADS 

Google Scholar
 

Perry, M. E. et al. Cassini INMS measurements of Enceladus plume density. Icarus 257, 139–162 (2015).

Article 
ADS 

Google Scholar
 

Postberg, F. et al. Discriminating contamination from particle components in spectra of Cassini’s dust detector CDA. Planet. Space Sci. 57, 1359–1374 (2009).

Article 
ADS 

Google Scholar
 

Khawaja, N. et al. Complementary mass spectral analysis of isomeric O-bearing organic compounds and fragmentation differences through analog techniques for spaceborne mass spectrometers. Planet. Sci. J. l 3, 254 (2022).

Article 

Google Scholar
 

McLafferty, F. W. & Turecek, F. Interpretation of Mass Spectra 4th edn (Univ. Science Books, 1993).

Dass, C. Fundamentals of Contemporary Mass Spectrometry 1st edn (John Wiley and Sons, 2007).

Liu, C. et al. The potential for organic synthesis in the ocean of Enceladus. Astrophys. J. 971, 51 (2024).

Article 
ADS 

Google Scholar
 

Frenklach, M. Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002).

Article 

Google Scholar
 

Trinks, H., Schröder, W. & Biebricher, C. K. Ice and the origin of life. Orig. Life Evol. Biosph. 35, 429–445 (2005).

Article 
ADS 

Google Scholar
 

Menor‐Salván, C., Ruiz‐Bermejo, M., Osuna‐Esteban, S., Muñoz‐Caro, G. & Veintemillas‐Verdaguer, S. Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a prebiotic scenario. Chem. Biodivers. 5, 2729–2739 (2008).

Article 

Google Scholar
 

Zhou, Y. et al. Selective exclusion of aromatic organic carbon during lake ice formation. Geophys. Res. Lett. 50, e2022GL101414 (2023).

Article 
ADS 

Google Scholar
 

Ménez, B. et al. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 564, 59–63 (2018).

Article 
ADS 

Google Scholar
 

McCollom, T. M., Seewald, J. S. & Simoneit, B. R. T. Reactivity of monocyclic aromatic compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 65, 455–468 (2001).

Article 
ADS 

Google Scholar
 

Luther, G. W. Hydrothermal vents are a source of old refractory organic carbon to the deep ocean. Geophys. Res. Lett. 48, e2021GL094869 (2021).

Article 
ADS 

Google Scholar
 

McCollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).

Article 
ADS 

Google Scholar
 

Konn, C. et al. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chem. Geol. 258, 299–314 (2009).

Article 
ADS 

Google Scholar
 

Xu, H. et al. Organic compounds in geological hydrothermal systems: a critical review of molecular transformation and distribution. Earth Sci. Rev. 252, 104757 (2024).

Article 

Google Scholar
 

Xu, H. et al. Molecular evidence reveals the presence of hydrothermal effect on ultra-deep-preserved organic compounds. Chem. Geol. 608, 121045 (2022).

Article 

Google Scholar
 

Burchell, M. J. & Armes, S. P. Impact ionisation spectra from hypervelocity impacts using aliphatic poly(methyl methacrylate) microparticle projectiles. Rapid Commun. Mass Spectrom. 25, 543–550 (2011).

Article 
ADS 

Google Scholar
 

Mumma, M. J. & Charnley, S. B. The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011).

Article 
ADS 

Google Scholar
 

Goesmann, F. et al. Organic compounds on comet 67P/Churyumov–Gerasimenko revealed by COSAC mass spectrometry. Science 349, aab0689 (2015).

Article 

Google Scholar
 

Schulte, M. D. & Shock, E. L. Aldehydes in hydrothermal solution: standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim. Cosmochim. Acta 57, 3835–3846 (1993).

Article 
ADS 

Google Scholar
 

Kim, S. M., Kim, Y. S., Kim, D. W., Rios, R. & Yang, J. W. Acetaldehyde: a small organic molecule with big impact on organocatalytic reactions. Chem. A Eur. J. 22, 2214–2234 (2016).

Article 

Google Scholar
 

Naraoka, H., Yamashita, Y., Yamaguchi, M. & Orthous-Daunay, F.-R. Molecular evolution of N-containing cyclic compounds in the parent body of the Murchison meteorite. Am. Chem. Soc. Earth Space Chem. 1, 540–550 (2017).

ADS 

Google Scholar
 

Diederich, P. et al. Formation, stabilization and fate of acetaldehyde and higher aldehydes in an autonomously changing prebiotic system emerging from acetylene. Commun. Chem. 6, 38 (2023).

Article 

Google Scholar
 

Pentsak, E. O., Murga, M. S. & Ananikov, V. P. Role of acetylene in the chemical evolution of carbon complexity. Am. Chem. Soc. Earth Space Chem. 8, 798–856 (2024).

ADS 

Google Scholar
 

Biver, N. & Bockelée-Morvan, D. Complex organic molecules in comets from remote-sensing observations at millimeter wavelengths. Am. Chem. Soc. Earth Space Chem. 3, 1550–1555 (2019).

ADS 

Google Scholar
 

Glavin, D. P. et al. in Primitive Meteorites and Asteroids: Physical, Chemical and Spectroscopic Observations Paving the Way to Exploration (ed. Abreu, N.) 205–271 (Elsevier, 2018).

Bradley, A. S., Fredricks, H., Hinrichs, K.-U. & Summons, R. E. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Org. Geochem. 40, 1169–1178 (2009).

Article 
ADS 

Google Scholar
 

Rushdi, A. I. & Simoneit, B. R. T. Condensation reactions and formation of amides, esters, and nitriles under hydrothermal conditions. Astrobiology 4, 211–224 (2004).

Article 
ADS 

Google Scholar
 

Fernández-García, C., Coggins, A. J. & Powner, M. W. A chemist’s perspective on the role of phosphorus at the origins of life. Life 7, 31 (2017).

Article 
ADS 

Google Scholar
 

Aspin, A., Smith, B., Burcar, E., Firestone, Z. & Yang, Z. Experimental and theoretical investigation of alkene transformations in oceanic hydrothermal fluids: a mechanistic study of styrene. Geophys. l Res. Lett. 50, e2023GL103738 (2023).

Article 
ADS 

Google Scholar
 

Mikula, R. et al. Impact ionization mass spectra of polypyrrole-coated anthracene microparticles: a useful mimic for cosmic polycyclic aromatic hydrocarbon dust. Am. Chem. Soc. Earth Space Chem. 8, 586–605 (2024).

ADS 

Google Scholar
 

Jaramillo-Botero, A. et al. Understanding hypervelocity sampling of biosignatures in space missions. Astrobiology 21, 421–442 (2021).

Article 
ADS 

Google Scholar
 

Schulze, J. A. et al. Effect of salts on the formation and hypervelocity-induced fragmentation of icy clusters with embedded amino acids. Am. Chem. Soc. Earth Space Chem. 7, 168–181 (2023).

ADS 

Google Scholar
 

Klenner, F. et al. Analog experiments for the identification of trace biosignatures in ice grains from extraterrestrial ocean worlds. Astrobiology 20, 179–189 2065 (2020).

Article 
ADS 

Google Scholar
 

Hillier, J. K., Fiege, K., Trieloff, M. & Srama, R. Numerical modelling of mineral impact ionisation spectra. Planet. Space Sci. 89, 159–166 (2013).

Article 
ADS 

Google Scholar
 

Mocker, A. et al. On the application of a linear time-of-flight mass spectrometer for the investigation of hypervelocity impacts of micron and sub-micron sized dust particles. Planet. Space Sci. 89, 47–57 (2013).

Article 
ADS 

Google Scholar
 

Kempf, S. et al. SUDA: a SUrface Dust Analyser for compositional mapping of the Galilean moon Europa. Space Sci. Rev. 221, 10 (2025).

Article 
ADS 

Google Scholar
 

Simolka, J. et al. The DESTINY(+) Dust Analyser—a dust telescope for analysing cosmic dust dynamics and composition. Philos. Trans. R. Soc. A 382, 20230199 (2024).

Article 
ADS 

Google Scholar
 

Klenner, F. et al. How to identify cell material in a single ice grain emitted from Enceladus or Europa. Sci. Adv. 10, eadl0849 (2024).

Article 

Google Scholar
 

Magee, B. A. & Waite, J. H. Neutral gas composition of Enceladus’ plume—model parameter insights from Cassini-INMS. In 48th Lunar and Planetary Science Conference, 2974 (Universities Space Research Association, 2017).

Postberg, F. et al. in Enceladus and the Icy Moons of Saturn (eds Schenk, P. M. et al.) 129–162 (Univ. of Arizona Press, 2018).

Sarma, N. S. et al. Hydrothermal alteration promotes humic acid formation in sediments: a case study of the Central Indian Ocean Basin. J. Geophys. Res. Oceans 123, 110–130 (2018).

Article 
ADS 

Google Scholar
 

Sinha, S. & Raj, A. Polycyclic aromatic hydrocarbon (PAH) formation from benzyl radicals: a reaction kinetics study. Phys. Chem. Chem. Phys. 18, 8120–8131 (2016).

Article 

Google Scholar
 

Reizer, E., Viskolcz, B. & Fiser, B. Formation and growth mechanisms of polycyclic aromatic hydrocarbons: a mini-review. Chemosphere 291, 132793 (2022).

Article 

Google Scholar
 

Chen, P. et al. Hydrothermal synthesis of similar mineral-sourced humic acid from food waste and the role of protein. Sci. Total Environ. 828, 154440 (2022).

Article 

Google Scholar
 

Denney, D. B. & Denney, D. Z. Studies of the mechanisms of the reactions of benzoyl peroxide with secondary amines and phenols. J. Am. Chem. Soc. 82, 1389–1393 (1960).

Article 
ADS 

Google Scholar
 

El-Baz, H. A. et al. Enzymatic synthesis of glucose fatty acid esters using SCOs as acyl group-donors and their biological activities. Appl. Sci. 11, 2700 (2021).

Article 

Google Scholar
 

Habib, U., Riaz, M. & Hofmann, M. Unraveling the way acetaldehyde is formed from acetylene: a study based on DFT. Am. Chem. Soc. Omega 6, 6924–6933 (2021).


Google Scholar
 

Cedillo, L. et al. Ether lipid biosynthesis promotes lifespan extension and enables diverse pro-longevity paradigms in Caenorhabditis elegans. eLife 12, e82210 (2023).

Article 

Google Scholar
 

Barge, L. M., Flores, E., Baum, M. M., VanderVelde, D. G. & Russell, M. J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl Acad. Sci. USA 116, 4828–4833 (2019).

Article 
ADS 

Google Scholar
 

Koga, T. & Naraoka, H. Synthesis of amino acids from aldehydes and ammonia: implications for organic reactions in carbonaceous chondrite parent bodies. Am. Chem. Soc. Earth Space Chem. 6, 1311–1320 (2022).

ADS 

Google Scholar
 

Miller, S. L. & Van Trump, J. E. The Strecker synthesis in the primitive ocean. In Origin of Life (ed. Wolman, Y.) 135–141 (Springer Netherlands, 1981).

Pizzarello, S. Catalytic syntheses of amino acids and their significance for nebular and planetary chemistry: catalytic syntheses of amino acids. Meteorit. Planet. Sci. 47, 1291–1296 (2012).

Article 
ADS 

Google Scholar
 

Schwander, L. et al. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front. Microbiol. 14, 1257597 (2023).

Article 

Google Scholar
 

Al-Faze, R., Kozhevnikova, E. F. & Kozhevnikov, I. V. Diethyl ether conversion to ethene and ethanol catalyzed by heteropoly acids. Am. Chem. Soc. Omega 6, 9310–9318 (2021).


Google Scholar
 

Groeneveld, G., Kuijer, S. & De Puit, M. Preparation of cyanoacrylate derivatives and comparison of dual action cyanoacrylate formulations. Sci. Justice 54, 42–48 (2014).

Article 

Google Scholar
 

Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

Article 

Google Scholar
 

Jeilani, Y. A., Fearce, C. & Nguyen, M. T. Acetylene as an essential building block for prebiotic formation of pyrimidine bases on Titan. Phys. Chem. Chem. Phys. 17, 24294–24303 (2015).

Article 

Google Scholar
 

Perrero, J. et al. Non-energetic formation of ethanol via CCH reaction with interstellar H2O ices. A computational chemistry study. Am. Chem. Soc. Earth Space Chem. 6, 496–511 (2022).

ADS 

Google Scholar
 

Cairns, T. L., Sauer, J. C. & Wilkinson, W. K. Synthesis of pyrimidines and pyridines from acetylene and nitriles. J. Am. Chem. Soc. 74, 3989–3992 (1952).

Article 
ADS 

Google Scholar
 

Ma, Y. et al. Direct conversion of methane to ethylene and acetylene over an iron-based metal–organic framework. J. Am. Chem. Soc. 145, 20792–20800 (2023).

Article 
ADS 

Google Scholar
 

Becker, S. et al. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76–82 (2019).

Article 
ADS 

Google Scholar
 

Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28, 31–36 (2002).

Article 

Google Scholar