Nadort, A., Zhao, J. & Goldys, E. M. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016).

Article 
ADS 

Google Scholar
 

Lin, Y. L. et al. Enhanced sub-bandgap efficiency of a solid-state organic intermediate band solar cell using triplet–triplet annihilation. Energy Environ. Sci. 10, 1465–1475 (2017).

Article 

Google Scholar
 

Sheng, W. et al. Tremendously enhanced photocurrent enabled by triplet–triplet annihilation up-conversion for high-performance perovskite solar cells. Energy Environ. Sci. 14, 3532–3541 (2021).

Article 

Google Scholar
 

Li, C. et al. Photocurrent enhancement from solid-state triplet–triplet annihilation upconversion of low-intensity, low-energy photons. ACS Photonics 3, 784–790 (2016).

Article 

Google Scholar
 

Beery, D., Wheeler, J. P., Arcidiacono, A. & Hanson, K. CdSe quantum dot sensitized molecular photon upconversion solar cells. ACS Appl. Energy Mater. 3, 29–37 (2020).

Article 

Google Scholar
 

Ravetz, B. D. et al. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 565, 343–346 (2019).

Article 
ADS 

Google Scholar
 

Zhu, X., Su, Q., Feng, W. & Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 46, 1025–1039 (2017).

Article 

Google Scholar
 

Sanders, S. N. et al. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 604, 474–478 (2022).

Article 
ADS 

Google Scholar
 

Gray, V., Moth-Poulsen, K., Albinsson, B. & Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 362, 54–71 (2018).

Article 

Google Scholar
 

Alves, J., Feng, J., Nienhaus, L. & Schmidt, T. W. Challenges, progress and prospects in solid state triplet fusion upconversion. J. Mater. Chem. C 10, 7783–7798 (2022).

Article 

Google Scholar
 

Lin, T.-A., Perkinson, C. F. & Baldo, M. A. Strategies for high-performance solid-state triplet–triplet-annihilation-based photon upconversion. Adv. Mater. 32, 1908175 (2020).

Article 

Google Scholar
 

Ogawa, T. et al. Donor–acceptor–collector ternary crystalline films for efficient solid-state photon upconversion. J. Am. Chem. Soc. 140, 8788–8796 (2018).

Article 
ADS 

Google Scholar
 

Wu, M. et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photon. 10, 31–34 (2016).

Article 
ADS 

Google Scholar
 

Wu, T. C., Congreve, D. N. & Baldo, M. A. Solid state photon upconversion utilizing thermally activated delayed fluorescence molecules as triplet sensitizer. Appl. Phys. Lett. 107, 031103 (2015).

Article 
ADS 

Google Scholar
 

Izawa, S. & Hiramoto, M. Efficient solid-state photon upconversion enabled by triplet formation at an organic semiconductor interface. Nat. Photon. 15, 895–900 (2021).

Article 
ADS 

Google Scholar
 

Hu, M. et al. Bulk heterojunction upconversion thin films fabricated via one-step solution deposition. ACS Nano 17, 22642–22655 (2023).

Article 

Google Scholar
 

Wu, D. M., García-Etxarri, A., Salleo, A. & Dionne, J. A. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014).

Article 

Google Scholar
 

Honda, J., Sugawa, K., Tahara, H. & Otsuki, J. Plasmonic metal nanostructures meet triplet–triplet annihilation-based photon upconversion systems: performance improvements and application trends. Nanomaterials 13, 1559 (2023).

Article 

Google Scholar
 

Bangle, R. E., Li, H. & Mikkelsen, M. H. Uncovering the mechanisms of triplet–triplet annihilation upconversion enhancement via plasmonic nanocavity tuning. ACS Nano 17, 24022–24032 (2023).

Article 

Google Scholar
 

Bujak, Ł, Narushima, K., Sharma, D. K., Hirata, S. & Vacha, M. Plasmon enhancement of triplet exciton diffusion revealed by nanoscale imaging of photochemical fluorescence upconversion. J. Phys. Chem. C 121, 25479–25486 (2017).

Article 

Google Scholar
 

Baluschev, S. et al. Metal-enhanced up-conversion fluorescence: effective triplet−triplet annihilation near silver surface. Nano Lett. 5, 2482–2484 (2005).

Article 
ADS 

Google Scholar
 

Park, J. K. et al. Enhanced triplet–triplet annihilation in bicomponent organic systems by using a gap plasmon resonator. Nanoscale 7, 12828–12832 (2015).

Article 
ADS 

Google Scholar
 

Poorkazem, K., Hesketh, A. V. & Kelly, T. L. Plasmon-enhanced triplet–triplet annihilation using silver nanoplates. J. Phys. Chem. C 118, 6398–6404 (2014).

Article 

Google Scholar
 

Wisch, J. A. et al. Plasmon mediated near-field energy transfer from solid-state, electrically injected excitons to solution phase chromophores. Adv. Funct. Mater. 33, 2214367 (2023).

Article 
ADS 

Google Scholar
 

An, K. H., Shtein, M. & Pipe, K. P. Surface plasmon mediated energy transfer of electrically-pumped excitons. Opt. Express 18, 4041–4048 (2010).

Article 
ADS 

Google Scholar
 

Andrew, P. & Barnes, W. L. Energy transfer across a metal film mediated by surface plasmon polaritons. Science 306, 1002–1005 (2004).

Article 
ADS 

Google Scholar
 

Chen, Y., Chen, J., Zhao, Y. & Ma, D. High efficiency blue phosphorescent organic light-emitting diode based on blend of hole- and electron-transporting materials as a co-host. Appl. Phys. Lett. 100, 213301 (2012).

Article 
ADS 

Google Scholar
 

Baldo, M. A., Lamansky, S., Burrows, P. E., Thompson, M. E. & Forrest, S. R. Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl. Phys. Lett. 75, 4–6 (1999).

Article 
ADS 

Google Scholar
 

Sambles, J. R., Bradbery, G. W. & Yang, F. Optical excitation of surface plasmons: an introduction. Contemp. Phys. 32, 173–183 (1991).

Article 
ADS 

Google Scholar
 

Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).

Article 
ADS 

Google Scholar
 

Giebink, N. C., D’Andrade, B. W., Weaver, M. S., Brown, J. J. & Forrest, S. R. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105, 124514 (2009).

Article 
ADS 

Google Scholar
 

Fusella, M. A. et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 585, 379–382 (2020).

Article 
ADS 

Google Scholar
 

Fusella, M. et al. Optimizing plasmonic PHOLEDs for efficiency, stability, and angular profile. In Proc. International Display Workshops 544 (IDW, 2023).

Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).

Article 
ADS 

Google Scholar
 

Aldrich, M. pspectro: photometric and colorimetric calculations (MATLAB, 2025); https://www.mathworks.com/matlabcentral/fileexchange/28185-pspectro-photometric-and-colorimetric-calculations