Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).
Brunner, D. & Psaltis, D. Competitive photonic neural networks. Nat. Photonics 15, 323–324 (2021).
Huang, C. et al. Prospects and applications of photonic neural networks. Adv. Phys. X 7, 1981155 (2022).
Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).
McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).
Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).
Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).
Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).
Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).
Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).
Fyrillas, A., Faure, O., Maring, N., Senellart, J. & Belabas, N. Scalable machine learning-assisted clear-box characterization for optimally controlled photonic circuits. Optica 11, 427 (2024).
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).
Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).
Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).
Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).
Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).
Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022).
Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).
Zuo, C. & Chen, Q. Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks. Light Sci. Appl. 11, 208 (2022).
Zhang, Z. et al. Space–time projection enabled ultrafast all‐optical diffractive neural network. Laser Photon. Rev. 18, 2301367 (2024).
Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 8, 112 (2019).
Luo, X. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 11, 158 (2022).
Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10, 25 (2021).
Hu, J. et al. Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024).
Rahman, M. S. S., Yang, X., Li, J., Bai, B. & Ozcan, A. Universal linear intensity transformations using spatially incoherent diffractive processors. Light Sci. Appl. 12, 195 (2023).
Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl. 10, 196 (2021).
Cheng, Y. et al. Photonic neuromorphic architecture for tens-of-task lifelong learning. Light Sci. Appl. 13, 56 (2024).
Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).
Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023).
Yao, Y., Wei, Y., Dong, J., Li, M. & Zhang, X. Large-scale reconfigurable integrated circuits for wideband analog photonic computing. Photonics 10, 300 (2023).
Nemati, A., Wang, Q., Hong, M. H. & Teng, J. H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 1–25 (2018).
Qu, Y., Lian, H., Ding, C., Liu, H. & Liu, L. High-frame-rate reconfigurable diffractive neural network based on superpixels. Opt. Lett 48, 1–4 (2023).
Yang, G. et al. Nonlocal phase-change metaoptics for reconfigurable nonvolatile image processing. Light Sci. Appl. 14, 182 (2025).
Dinsdale, N. J. et al. Deep learning enabled design of complex transmission matrices for universal optical components. ACS Photonics 8, 283–295 (2021).
Li, Q., Sun, Y. & Zhang, X. Single-layer universal optical computing. Phys. Rev. A 109, 053527 (2024).
Giamougiannis, G. et al. A coherent photonic crossbar for scalable universal linear optics. J. Light. Technol. 41, 2425–2442 (2023).
Yang, Y., Krompass, D. & Tresp, V. Tensor-train recurrent neural networks for video classification. In Proc. 34th International Conference on Machine Learning https://proceedings.mlr.press/v70/yang17e/yang17e.pdf (PMLR, 2017).
Cheng, Y., Li, G., Wong, N., Chen, H. & Yu, H. DEEPEYE: a deeply tensor-compressed neural network for video comprehension on terminal devices. ACM Trans. Embed. Comput. Syst. 19, 1–25 (2020).
Miscuglio, M. & Sorger, V. J. Photonic tensor cores for machine learning. Appl. Phys. Rev. 7, 031404 (2020).
Wang, Y. et al. An energy-efficient nonvolatile in-memory computing architecture for extreme learning machine by domain-wall nanowire devices. IEEE Trans. Nanotechnol. 14, 998–1012 (2015).
Cheng, Y., Wang, C., Chen, H.-B. & Yu, H. A large-scale in-memory computing for deep neural network with trained quantization. Integration 69, 345–355 (2019).
Krizhevsky, A. et al. Learning multiple layers of features from tiny images. University of Toronto https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (2009).
Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248-255 (IEEE, 2009); https://doi.org/10.1109/CVPR.2009.5206848
Oseledets, I. V. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011).
Cheng, Y., Yang, Y., Chen, H.-B., Wong, N. & Yu, H. S3-Net: a fast scene understanding network by single-shot segmentation for autonomous driving. ACM Trans. Intell. Syst. Technol. 12, 1–19 (2021).
A, de S.-E. The Little Prince and Letter to a Hostage (Penguin UK, 2021).
Rong, X. word2vec parameter learning explained. Nature 606, 501–506 (2014).
Graves, A., Jaitly, N. & Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding 273–278 (IEEE, 2013); https://doi.org/10.1109/ASRU.2013.6707742
Gesmundo, A. & Dean, J. An evolutionary approach to dynamic introduction of tasks in large-scale multitask learning systems. Preprint at https://arxiv.org/abs/2205.12755 (2022).
Plath, J., Sinclair, G. & Curnutt, K. The 100 Greatest Literary Characters (Bloomsbury, 2019).
Carroll L. Alice’s Adventures in Wonderland (Broadview Press, 2011).
Baum, L. F. The Wonderful Wizard of Oz (Broadview Press, 2024).
Abdi, H. & Williams, L. J. Principal component analysis. WIREs Comput. Stat. 2, 433–459 (2010).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).
Wang, B. Dataset for couplets. GitHub https://github.com/wb14123/couplet-dataset (2018).
michaelarman. Poems Dataset (NLP). Kaggle https://www.kaggle.com/datasets/michaelarman/poemsdataset (2020).
Karvelis, P., Gavrilis, D., Georgoulas, G. & Stylios, C. Topic recommendation using Doc2Vec. In 2018 International Joint Conference on Neural Networks (IJCNN) 1–6 (IEEE, 2018); https://doi.org/10.1109/IJCNN.2018.8489513
Chen, D. & Dollan, W. Collecting highly parallel data for paraphrase evaluation. In Proc. 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (eds Lin, D. et al.) 190–200 (Association for Computational Linguistics, 2011).
Abu-El-Haija, S. et al. YouTube-8M: a large-scale video classification benchmark. Preprint at https://arxiv.org/abs/1609.08675 (2016).
Yang, A. et al. Vid2Seq: large-scale pretraining of a visual language model for dense video captioning. Preprint at https://arxiv.org/abs/2302.14115 (2023).
Liang, Y., Zhu, L., Wang, X. & Yang, Y. IcoCap: improving video captioning by compounding images. IEEE Trans. Multimed. 26, 4389–4400 (2024).
Xu, J., Mei, T., Yao, T. & Rui, Y. MSR-VTT: a large video description dataset for bridging video and language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5288–5296 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.571
Schuldt, C., Laptev, I. & Caputo, B. Recognizing human actions: a local SVM approach. In Proc. 17th International Conference on Pattern Recognition, ICPR 2004 https://doi.org/10.1109/ICPR.2004.1334462 (IEEE, 2004).
Srivastava, N., Mansimov, E. & Salakhutdinov, R. Unsupervised learning of video representations using LSTMs. Preprint at https://arxiv.org/abs/1502.04681 (2015).
Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).
Wang, C. et al. Diffractive tensorized unit for million-TOPS general-purpose computing. Dryad https://doi.org/10.5061/dryad.7d7wm387c (2025).