McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943).

Article 
MathSciNet 

Google Scholar
 

Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

Article 
ADS 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar
 

Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

Article 
PubMed 

Google Scholar
 

Cherry, K. M. & Qian, L. Scaling up molecular pattern recognition with DNA-based winner-take-all neural networks. Nature 559, 370–376 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Xiong, X. et al. Molecular convolutional neural networks with DNA regulatory circuits. Nat. Mach. Intell. 4, 625–635 (2022).

Article 

Google Scholar
 

Okumura, S. et al. Nonlinear decision-making with enzymatic neural networks. Nature 610, 496–501 (2022).

Article 
ADS 
PubMed 

Google Scholar
 

Chen, Z. et al. A synthetic protein-level neural network in mammalian cells. Science 386, 1243–1250 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Churchland, P. S. & Sejnowski, T. J. The Computational Brain (MIT Press, 2016).

Farmer, J. D., Packard, N. H. & Perelson, A. S. The immune system, adaptation, and machine learning. Physica D 22, 187–204 (1986).

Article 
ADS 
MathSciNet 

Google Scholar
 

Vladimirov, N. & Sourjik, V. Chemotaxis: how bacteria use memory. Biol. Chem. 390, 1097–1104 (2009).

Article 
PubMed 

Google Scholar
 

Kieffer, C., Genot, A. J., Rondelez, Y. & Gines, G. Molecular computation for molecular classification. Adv. Biol. 7, 2200203 (2023).

Article 

Google Scholar
 

Nagipogu, R. T., Fu, D. & Reif, J. H. A survey on molecular-scale learning systems with relevance to DNA computing. Nanoscale 15, 7676–7694 (2023).

Article 
PubMed 

Google Scholar
 

Vasle, A. H. & Moškon, M. Synthetic biological neural networks: from current implementations to future perspectives. Biosystems 237, 105164 (2024).

Hjelmfelt, A., Weinberger, E. D. & Ross, J. Chemical implementation of neural networks and Turing machines. Proc. Natl Acad. Sci. USA 88, 10983–10987 (1991).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Poole, W. et al. Chemical Boltzmann Machines. In 23rd International Conference on DNA Computing and Molecular Programming (DNA 23) (eds Brijder, R. & Qian, L.) 210–231 (Springer, 2017).

Vasić, M., Chalk, C., Luchsinger, A., Khurshid, S. & Soloveichik, D. Programming and training rate-independent chemical reaction networks. Proc. Natl Acad. Sci. USA 119, e2111552119 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Buchler, N. E., Gerland, U. & Hwa, T. On schemes of combinatorial transcription logic. Proc. Natl Acad. Sci. USA 100, 5136–5141 (2003).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Fernando, C. T. et al. Molecular circuits for associative learning in single-celled organisms. J. R. Soc. Interface 6, 463–469 (2009).

Article 
PubMed 

Google Scholar
 

Rizik, L., Danial, L., Habib, M., Weiss, R. & Daniel, R. Synthetic neuromorphic computing in living cells. Nat. Commun. 13, 5602 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bray, D. Protein molecules as computational elements in living cells. Nature 376, 307–312 (1995).

Article 
ADS 
PubMed 

Google Scholar
 

Pandi, A. et al. Metabolic perceptrons for neural computing in biological systems. Nat. Commun. 10, 3880 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kim, J., Hopfield, J. & Winfree, E. Neural network computation by in vitro transcriptional circuits. Adv. Neural Inf. Process. Syst. 17, 681–688 (2004).

van der Linden, A. J. et al. DNA input classification by a riboregulator-based cell-free perceptron. ACS Synth. Biol. 11, 1510–1520 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Genot, A. J., Fujii, T. & Rondelez, Y. Scaling down DNA circuits with competitive neural networks. J. R. Soc. Interface 10, 20130212 (2013).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Lakin, M. R. & Stefanovic, D. Supervised learning in adaptive DNA strand displacement networks. ACS Synth. Biol. 5, 885–897 (2016).

Article 
PubMed 

Google Scholar
 

Evans, C. G., O’Brien, J., Winfree, E. & Murugan, A. Pattern recognition in the nucleation kinetics of non-equilibrium self-assembly. Nature 625, 500–507 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Pei, R., Matamoros, E., Liu, M., Stefanovic, D. & Stojanovic, M. N. Training a molecular automaton to play a game. Nat. Nanotechnol. 5, 773–777 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Kim, J., Khetarpal, I., Sen, S. & Murray, R. M. Synthetic circuit for exact adaptation and fold-change detection. Nucleic Acids Res. 42, 6078–6089 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Nakakuki, T. et al. DNA reaction system that acquires classical conditioning. ACS Synth. Biol. 13, 521–529 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rojas, R. Neural Networks: A Systematic Introduction (Springer, 2013).

MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proc. Fifth Berkeley Symposium on Mathematical Statistics and Probability (eds Le Cam, L. M. & Neyman, J.) Vol. 1, 281–297 (University of California Press, 1967).

Yurke, B., Turberfield, A. J., Mills Jr, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

Article 
ADS 
PubMed 

Google Scholar
 

Soloveichik, D., Seelig, G. & Winfree, E. DNA as a universal substrate for chemical kinetics. Proc. Natl Acad. Sci. USA 107, 5393–5398 (2010).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, Y.-J. et al. Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017).

Article 
PubMed 

Google Scholar
 

Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale circuits. J. R. Soc. Interface 8, 1281–1297 (2011).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

Article 
ADS 
PubMed 

Google Scholar
 

Thubagere, A. J. et al. Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8, 14373 (2017).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Johnson, H. A. & Condon, A. A coupled reconfiguration mechanism for single-stranded DNA strand displacement systems. In 28th International Conference on DNA Computing and Molecular Programming (DNA 28) (eds Ouldridge, T. E. & Wickham, S. F. J.) Vol. 238, 3:1–3:19 (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022).

Yang, X., Tang, Y., Traynor, S. M. & Li, F. Regulation of DNA strand displacement using an allosteric DNA toehold. J. Am. Chem. Soc. 138, 14076–14082 (2016).

Article 
PubMed 

Google Scholar
 

Haley, N. E. et al. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat. Commun. 11, 2562 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Deng, L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29, 141–142 (2012).

Article 
ADS 

Google Scholar
 

Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

Article 
ADS 
PubMed 

Google Scholar
 

Baldwin, J. M. A new factor in evolution. Am. Nat. 30, 441–451 (1896).

Article 

Google Scholar
 

Hinton, G. E. & Nowlan, S. J. How learning can guide evolution. Complex Syst. 1, 495–502 (1987).


Google Scholar
 

Genot, A. J., Bath, J. & Turberfield, A. J. Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133, 20080–20083 (2011).

Article 
PubMed 

Google Scholar
 

DelRosso, N. V., Hews, S., Spector, L. & Derr, N. D. A molecular circuit regenerator to implement iterative strand displacement operations. Angew. Chem. Int. Ed. 56, 4443–4446 (2017).

Article 

Google Scholar
 

Scalise, D., Dutta, N. & Schulman, R. DNA strand buffers. J. Am. Chem. Soc. 140, 12069–12076 (2018).

Article 
PubMed 

Google Scholar
 

Garg, S. et al. Renewable time-responsive DNA circuits. Small 14, 1801470 (2018).

Article 

Google Scholar
 

Hahn, J. & Shih, W. M. Thermal cycling of DNA devices via associative strand displacement. Nucleic Acids Res. 47, 10968–10975 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Clamons, S., Qian, L. & Winfree, E. Programming and simulating chemical reaction networks on a surface. J. R. Soc. Interface 17, 20190790 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Takinoue, M. DNA droplets for intelligent and dynamical artificial cells: from the viewpoint of computation and non-equilibrium systems. Interface Focus 13, 20230021 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Wang, S. S. & Ellington, A. D. Pattern generation with nucleic acid chemical reaction networks. Chem. Rev. 119, 6370–6383 (2019).

Article 
PubMed 

Google Scholar
 

Mordvintsev, A., Randazzo, E., Niklasson, E. & Levin, M. Growing neural cellular automata. Distill 5, e23 (2020).

Article 

Google Scholar
 

Randazzo, E., Mordvintsev, A., Niklasson, E., Levin, M. & Greydanus, S. Self-classifying MNIST digits. Distill 5, e00027–002 (2020).

Article 

Google Scholar
 

Lopez, R., Wang, R. & Seelig, G. A molecular multi-gene classifier for disease diagnostics. Nat. Chem. 10, 746–754 (2018).

Article 
PubMed 

Google Scholar
 

Zhang, C. et al. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol. 15, 709–715 (2020).

Article 
ADS 
PubMed 

Google Scholar
 

Cangialosi, A. et al. DNA sequence-directed shape change of photopatterned hydrogels via high-degree swelling. Science 357, 1126–1130 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Fern, J. & Schulman, R. Modular DNA strand-displacement controllers for directing material expansion. Nat. Commun. 9, 3766 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Stern, M. & Murugan, A. Learning without neurons in physical systems. Annu. Rev. Condensed Matter Phys. 14, 417–441 (2023).

Article 
ADS 

Google Scholar
 

Sanger, T. D. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2, 459–473 (1989).

Article 

Google Scholar
 

Al-Harbi, S. H. & Rayward-Smith, V. J. Adapting k-means for supervised clustering. Appl. Intell. 24, 219–226 (2006).

Article 

Google Scholar
 

Dirks, R. M., Bois, J. S., Schaeffer, J. M., Winfree, E. & Pierce, N. A. Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49, 65–88 (2007).

Article 
ADS 
MathSciNet 

Google Scholar
 

Fornace, M. E. et al. NUPACK: analysis and design of nucleic acid structures, devices, and systems. Preprint at https://doi.org/10.26434/chemrxiv-2022-xv98l (2022).

Cherry, K. M. & Qian, L. Supervised learning in DNA neural networks [Data set]. CaltechDATA https://doi.org/10.22002/5bvkt-r7y16 (2025).