Brodie, J. P. & Strader, J. Extragalactic globular clusters and galaxy formation. Annu. Rev. Astron. Astrophys. 44, 193–267 (2006).
Simon, J. D. The faintest dwarf galaxies. Annu. Rev. Astron. Astrophys. 57, 375–415 (2019).
Simon, J. D. et al. Timing the r-process enrichment of the ultra-faint dwarf galaxy Reticulum II. Astrophys. J. 944, 43 (2023).
Ji, A. P., Frebel, A., Simon, J. D. & Chiti, A. Complete element abundances of nine stars in the r-process galaxy Reticulum II. Astrophys. J. 830, 93 (2016).
Rodriguez, C. L. et al. The observed rate of binary black hole mergers can be entirely explained by globular clusters. Res. Not. Am. Astron. Soc. 5, 19 (2021).
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J. & McMillan, S. L. W. Formation of massive black holes through runaway collisions in dense young star clusters. Nature 428, 724–726 (2004).
Häberle, M. et al. Fast-moving stars around an intermediate-mass black hole in ω Centauri. Nature 631, 285–288 (2024).
Bañares-Hernández, A., Calore, F., Camalich, J. M. & Read, J. I. New constraints on the central mass contents of Omega Centauri from combined stellar kinematics and pulsar timing. Astron. Astrophys. 693, A104 (2025).
Evans, A. J., Strigari, L. E. & Zivick, P. Dark and luminous mass components of Omega Centauri from stellar kinematics. Mon. Not. R. Astron. Soc. 511, 4251–4264 (2022).
Carlberg, R. G. & Grillmair, C. J. The dark matter halo of M54. Astrophys. J. 935, 14 (2022).
Wan, Z. et al. Dynamics in the outskirts of four Milky Way globular clusters: it’s the tides that dominate. Mon. Not. R. Astron. Soc. 519, 192–207 (2023).
Grudić, M. Y. et al. Great balls of FIRE – I. The formation of star clusters across cosmic time in a Milky Way-mass galaxy. Mon. Not. R. Astron. Soc. 519, 1366–1380 (2023).
Ashman, K. M. & Zepf, S. E. The formation of globular clusters in merging and interacting galaxies. Astrophys. J. 384, 50–61 (1992).
Sameie, O. et al. Formation of proto-globular cluster candidates in cosmological simulations of dwarf galaxies at z > 4. Mon. Not. R. Astron. Soc. 522, 1800–1813 (2023).
Naoz, S. & Narayan, R. Globular clusters and dark satellite galaxies through the stream velocity. Astrophys. J. Lett. 791, L8 (2014).
Lake, W. et al. The Supersonic Project: star formation in early star clusters without dark matter. Astrophys. J. Lett. 956, L7 (2023).
Peebles, P. J. E. & Dicke, R. H. Origin of the globular star clusters. Astrophys. J. 154, 891 (1968).
Fall, S. M. & Rees, M. J. A theory for the origin of globular clusters. Astrophys. J. 298, 18–26 (1985).
Kravtsov, A. V. & Gnedin, O. Y. Formation of globular clusters in hierarchical cosmology. Astrophys. J. 623, 650–665 (2005).
Peebles, P. J. E. Dark matter and the origin of galaxies and globular star clusters. Astrophys. J. 277, 470–477 (1984).
Boley, A. C., Lake, G., Read, J. & Teyssier, R. Globular cluster formation within a cosmological context. Astrophys. J. Lett. 706, L192–L196 (2009).
Gutcke, T. A. Low-mass globular clusters from stripped dark matter halos. Astrophys. J. 971, 103 (2024).
Mashchenko, S. & Sills, A. Globular clusters with dark matter halos. II. Evolution in a tidal field. Astrophys. J. 619, 258–269 (2005).
Baumgardt, H. & Mieske, S. High mass-to-light ratios of ultra-compact dwarf galaxies – evidence for dark matter?. Mon. Not. R. Astron. Soc. 391, 942–948 (2008).
Vitral, E. & Boldrini, P. Properties of globular clusters formed in dark matter mini-halos. Astron. Astrophys. 667, A112 (2022).
Kim, C.-G. & Ostriker, E. C. Momentum injection by supernovae in the interstellar medium. Astrophys. J. 802, 99 (2015).
Agertz, O. et al. EDGE: the mass–metallicity relation as a critical test of galaxy formation physics. Mon. Not. R. Astron. Soc. 491, 1656–1672 (2020).
Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A. & Grillmair, C. J. Properties of globular cluster systems in nearby early-type galaxies. Astron. J. 121, 2974–2998 (2001).
Renaud, F., Agertz, O. & Gieles, M. The origin of the Milky Way globular clusters. Mon. Not. R. Astron. Soc. 465, 3622–3636 (2017).
Gray, E. I. et al. EDGE: a new model for nuclear star cluster formation in dwarf galaxies. Mon. Not. R. Astron. Soc. 539, 1167–1179 (2025).
Kirby, E. N. et al. The universal stellar mass–stellar metallicity relation for dwarf galaxies. Astrophys. J. 779, 102 (2013).
Rey, M. P. et al. EDGE: from quiescent to gas-rich to star-forming low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 497, 1508–1520 (2020).
Lahén, N., Naab, T. & Szécsi, D. Star clusters forming in a low-metallicity starburst – rapid self-enrichment by (very) massive stars. Mon. Not. R. Astron. Soc. 530, 645–667 (2024).
Lahén, N. et al. The GRIFFIN project—formation of star clusters with individual massive stars in a simulated dwarf galaxy starburst. Astrophys. J. 891, 2 (2020).
Calura, F. et al. Sub-parsec resolution cosmological simulations of star-forming clumps at high redshift with feedback of individual stars. Mon. Not. R. Astron. Soc. 516, 5914–5934 (2022).
Schneider, A., Smith, R. E., Macciò, A. V. & Moore, B. Non-linear evolution of cosmological structures in warm dark matter models. Mon. Not. R. Astron. Soc. 424, 684–698 (2012).
Lapi, A. et al. Astroparticle constraints from cosmic reionization and primordial galaxy formation. Universe 8, 476 (2022).
Bond, H. E. Where is population III? Astrophys. J. 248, 606–611 (1981).
Trussler, J. A. A. et al. On the observability and identification of Population III galaxies with JWST. Mon. Not. R. Astron. Soc. 525, 5328–5352 (2023).
Martin, N. F. et al. A stellar stream remnant of a globular cluster below the metallicity floor. Nature 601, 45–48 (2022).
Errani, R. et al. The Pristine survey – XVIII. C-19: tidal debris of a dark matter-dominated globular cluster? Mon. Not. R. Astron. Soc. 514, 3532–3540 (2022).
Simon, J. D. et al. Eridanus III and DELVE 1: carbon-rich primordial star clusters or the smallest dwarf galaxies? Astrophys. J. 976, 256 (2024).
Hayes, C. R. et al. GHOST commissioning science results: identifying a new chemically peculiar star in Reticulum II. Astrophys. J. 955, 17 (2023).
Jeon, M., Besla, G. & Bromm, V. Highly r-process enhanced stars in ultra-faint dwarf galaxies. Mon. Not. R. Astron. Soc. 506, 1850–1861 (2021).
Rey, M. P. et al. EDGE: the origin of scatter in ultra-faint dwarf stellar masses and surface brightnesses. Astrophys. J. Lett. 886, L3 (2019).
Rey, M. P. et al. EDGE: what shapes the relationship between H i and stellar observables in faint dwarf galaxies?. Mon. Not. R. Astron. Soc. 511, 5672–5681 (2022).
Orkney, M. D. A. et al. EDGE: the shape of dark matter haloes in the faintest galaxies. Mon. Not. R. Astron. Soc. 525, 3516–3532 (2023).
Eisenstein, D. J. & Hut, P. HOP: a new group-finding algorithm for N-body simulations. Astrophys. J. 498, 137 (1998).
Knollmann, S. R. & Knebe, A. AHF: Amiga’s halo finder. Astrophys. J. Suppl. Ser. 182, 608 (2009).
Katz, N. & White, S. D. M. Hierarchical galaxy formation: overmerging and the formation of an X-ray cluster. Astrophys. J. 412, 455–478 (1993).
Ade, P. A. R. et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014).
Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement-A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).
Kravtsov, A. V., Klypin, A. A. & Khokhlov, A. M. Adaptive refinement tree: a new high-resolution N-body code for cosmological simulations. Astrophys. J. Suppl. Ser. 111, 73–94 (1997).
Pontzen, A. et al. EDGE: a new approach to suppressing numerical diffusion in adaptive mesh simulations of galaxy formation. Mon. Not. R. Astron. Soc. 501, 1755–1765 (2021).
Stopyra, S., Pontzen, A., Peiris, H., Roth, N. & Rey, M. P. GenetIC—a new initial conditions generator to support genetically modified zoom simulations. Astrophys. J. Suppl. Ser. 252, 28 (2021).
Roth, N., Pontzen, A. & Peiris, H. V. Genetically modified haloes: towards controlled experiments in ΛCDM galaxy formation. Mon. Not. R. Astron. Soc. 455, 974–986 (2016).
Rey, M. P. & Pontzen, A. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history. Mon. Not. R. Astron. Soc. 474, 45–54 (2018).
Rosen, A. & Bregman, J. N. Global models of the interstellar medium in disk galaxies. Astrophys. J. 440, 634 (1995).
Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).
Andersson, E. P., Agertz, O., Renaud, F. & Teyssier, R. INFERNO: galactic winds in dwarf galaxies with star-by-star simulations including runaway stars. Mon. Not. R. Astron. Soc. 521, 2196–2214 (2023).
Andersson, E. P., Agertz, O. & Renaud, F. How runaway stars boost galactic outflows. Mon. Not. R. Astron. Soc. 494, 3328–3341 (2020).
Steinwandel, U. P., Bryan, G. L., Somerville, R. S., Hayward, C. C. & Burkhart, B. On the impact of runaway stars on dwarf galaxies with resolved interstellar medium. Mon. Not. R. Astron. Soc. 526, 1408–1427 (2023).
Andersson, E. P. et al. EDGE-INFERNO: simulating every observable star in faint dwarf galaxies and their consequences for resolved-star photometric surveys. Astrophys. J. 978, 129 (2025).
Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with kinetic supernova feedback. Mon. Not. R. Astron. Soc. 387, 1431–1444 (2008).
Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with thermal supernova feedback. Mon. Not. R. Astron. Soc. 426, 140–158 (2012).
Kravtsov, A. V. On the origin of the global Schmidt law of star formation. Astrophys. J. 590, L1–L4 (2003).
Saitoh, T. R. et al. Toward first-principle simulations of galaxy formation: I. How should we choose star-formation criteria in high-resolution simulations of disk galaxies? Publ. Astron. Soc. Jpn. 60, 667–681 (2008).
Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).
Rey, M. P. et al. EDGE: the emergence of dwarf galaxy scaling relations from cosmological radiation-hydrodynamics simulations. Mon. Not. R. Astron. Soc. 541, 1195–1217 (2025).
Prgomet, M. et al. EDGE: the sensitivity of ultra-faint dwarfs to a metallicity-dependent initial mass function. Mon. Not. R. Astron. Soc. 513, 2326–2334 (2022).
Orkney, M. D. A. et al. EDGE: two routes to dark matter core formation in ultra-faint dwarfs. Mon. Not. R. Astron. Soc. 504, 3509–3522 (2021).
Orkney, M. D. A., Read, J. I., Petts, J. A. & Gieles, M. Globular clusters as probes of dark matter cusp-core transformations. Mon. Not. R. Astron. Soc. 488, 2977–2988 (2019).
Orkney, M. D. A. et al. EDGE: the puzzling ellipticity of Eridanus II’s star cluster and its implications for dark matter at the heart of an ultra-faint dwarf. Mon. Not. R. Astron. Soc. 515, 185–200 (2022).
Klypin, A., Prada, F., Yepes, G., Heß, S. & Gottlöber, S. Halo abundance matching: accuracy and conditions for numerical convergence. Mon. Not. R. Astron. Soc. 447, 3693–3707 (2015).
Knebe, A. et al. Haloes gone MAD: The Halo-Finder Comparison Project. Mon. Not. R. Astron. Soc. 415, 2293–2318 (2011).
Pujol, A. et al. Subhaloes gone Notts: the clustering properties of subhaloes. Mon. Not. R. Astron. Soc. 438, 3205–3221 (2014).
Forouhar Moreno, V. J. et al. Assessing subhalo finders in cosmological hydrodynamical simulations. Preprint at https://arxiv.org/abs/2502.06932 (2025).
McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).
Plummer, H. C. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc. 71, 460–470 (1911).
Pontzen, A., Roškar, R., Stinson, G. & Woods, R. pynbody: N-body/SPH analysis for python (2013).
Pontzen, A. & Tremmel, M. TANGOS: the agile numerical galaxy organization system. Astrophys. J. Suppl. Ser. 237, 23 (2018).
Girardi, L. et al. The ACS Nearby Galaxy Survey Treasury. IX. Constraining asymptotic giant branch evolution with old metal-poor galaxies. Astrophys. J. 724, 1030–1043 (2010).
Marigo, P. et al. Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP-AGB models. Astron. Astrophys. 482, 883–905 (2008).
Kravtsov, A. V. The size–virial radius relation of galaxies. Astrophys. J. Lett. 764, L31 (2013).
Pace, A. B. The Local Volume Database: a library of the observed properties of nearby dwarf galaxies and star clusters. Preprint at https://doi.org/10.48550/arXiv.2411.07424 (2024).
Kim, D. & Jerjen, H. A hero’s little horse: discovery of a dissolving star cluster in Pegasus. Astrophys. J. 799, 73 (2015).
Torrealba, G., Belokurov, V. & Koposov, S. E. Nine tiny star clusters in Gaia DR1, PS1, and DES. Mon. Not. R. Astron. Soc. 484, 2181–2197 (2019).
Voggel, K. et al. Probing the boundary between star clusters and dwarf galaxies: a MUSE view on the dynamics of Crater/Laevens I. Mon. Not. R. Astron. Soc. 460, 3384–3397 (2016).
Weisz, D. R. et al. A Hubble Space Telescope study of the enigmatic Milky Way halo globular cluster crater. Astrophys. J. 822, 32 (2016).
Cerny, W. et al. Six more ultra-faint Milky Way companions discovered in the DECam Local Volume Exploration survey. Astrophys. J. 953, 1 (2023).
Martin, N. F. et al. SMASH 1: a very faint globular cluster disrupting in the outer reaches of the LMC? Astrophys. J. Lett. 830, L10 (2016).
Mau, S. et al. A faint halo star cluster discovered in the Blanco Imaging of the Southern Sky Survey. Astrophys. J. 875, 154 (2019).
Balbinot, E. et al. A new Milky Way halo star cluster in the Southern Galactic Sky. Astrophys. J. 767, 101 (2013).
Homma, D. et al. Boötes. IV. A new Milky Way satellite discovered in the Subaru Hyper Suprime-Cam Survey and implications for the missing satellite problem. Publ. Astron. Soc. Jpn. 71, 94 (2019).
Mau, S. et al. Two ultra-faint Milky Way stellar systems discovered in early data from the DECam Local Volume Exploration survey. Astrophys. J. 890, 136 (2020).
Fadely, R. et al. Segue 3: an old, extremely low luminosity star cluster in the Milky Way’s halo. Astron. J. 142, 88 (2011).
Muñoz, R. R. et al. A MegaCam survey of outer halo satellites. III. Photometric and structural parameters. Astrophys. J. 860, 66 (2018).
Conn, B. C., Jerjen, H., Kim, D. & Schirmer, M. On the nature of ultra-faint dwarf galaxy candidates. I. DES1, Eridanus III, and Tucana V. Astrophys. J. 852, 68 (2018).
Longeard, N. et al. Detailed study of the Milky Way globular cluster Laevens 3. Mon. Not. R. Astron. Soc. 490, 1498–1508 (2019).
Cerny, W. et al. DELVE 6: an ancient, ultra-faint star cluster on the outskirts of the Magellanic Clouds. Astrophys. J. Lett. 953, L21 (2023).
Longeard, N. et al. The pristine dwarf-galaxy survey – III. Revealing the nature of the Milky Way globular cluster Sagittarius II. Mon. Not. R. Astron. Soc. 503, 2754–2762 (2021).
Mutlu-Pakdil, B. et al. A deeper look at the new Milky Way satellites: Sagittarius II, Reticulum II, Phoenix II, and Tucana III. Astrophys. J. 863, 25 (2018).
Richstein, H. et al. Deep Hubble Space Telescope photometry of Large Magellanic Cloud and Milky Way ultrafaint dwarfs: a careful look into the magnitude–size relation. Astrophys. J. 967, 72 (2024).
Muñoz, R. R. et al. The discovery of an ultra-faint star cluster in the constellation of Ursa Minor. Astrophys. J. Lett. 753, L15 (2012).
Luque, E. et al. Deep SOAR follow-up photometry of two Milky Way outer-halo companions discovered with Dark Energy Survey. Mon. Not. R. Astron. Soc. 478, 2006–2018 (2018).
Cerny, W. et al. Discovery of an ultra-faint stellar system near the Magellanic Clouds with the DECam Local Volume Exploration Survey. Astrophys. J. 910, 18 (2021).
Gatto, M. et al. Deep very large telescope photometry of the faint stellar system in the Large Magellanic Cloud periphery YMCA-1. Astrophys. J. Lett. 929, L21 (2022).
Kim, D., Jerjen, H., Milone, A. P., Mackey, D. & Da Costa, G. S. Discovery of a faint outer halo Milky Way star cluster in the southern sky. Astrophys. J. 803, 63 (2015).
McConnachie, A. W. & Irwin, M. J. Structural properties of the M31 dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 365, 1263–1276 (2006).
McConnachie, A. W. The observed properties of dwarf galaxies in and around the Local Group. Astron. J. 144, 4 (2012).
Makarova, L. N. et al. A nearby isolated dwarf: star formation and structure of ESO 006-001. Astrophys. J. 943, 139 (2023).
Kirby, E. N., Bullock, J. S., Boylan-Kolchin, M., Kaplinghat, M. & Cohen, J. G. The dynamics of isolated Local Group galaxies. Mon. Not. R. Astron. Soc. 439, 1015–1027 (2014).
Dalcanton, J. J. et al. The ACS Nearby Galaxy Survey Treasury. Astrophys. J. Suppl. Ser. 183, 67–108 (2009).
Koribalski, B. S. et al. The 1000 brightest HIPASS galaxies: H I properties. Astron. J. 128, 16–46 (2004).
Newman, M. J. B. et al. An empirical calibration of the tip of the red giant branch distance method in the near infrared. I. HST WFC3/IR F110W and F160W filters. Astrophys. J. 966, 175 (2024).
Jones, M. G. et al. Pavo: discovery of a star-forming dwarf galaxy just outside the Local Group. Astrophys. J. Lett. 957, L5 (2023).
Karachentsev, I. D. et al. A new galaxy near the Local Group in Draco. Astron. Astrophys. 379, 407–411 (2001).
Higgs, C. R. et al. Solo dwarfs II: the stellar structure of isolated Local Group dwarf galaxies. Mon. Not. R. Astron. Soc. 503, 176–199 (2021).
Kirby, E. N. et al. Chemistry and kinematics of the late-forming dwarf irregular galaxies Leo A, Aquarius, and Sagittarius DIG. Astrophys. J. 834, 9 (2017).
McQuinn, K. B. W. et al. Pegasus W: an ultrafaint dwarf galaxy outside the halo of M31 not quenched by reionization. Astrophys. J. 944, 14 (2023).
Bernstein-Cooper, E. Z. et al. ALFALFA discovery of the nearby gas-rich dwarf galaxy Leo P. V. neutral gas dynamics and kinematics. Astron. J. 148, 35 (2014).
McQuinn, K. B. W. et al. Leo P: an unquenched very low-mass galaxy. Astrophys. J. 812, 158 (2015).
Sand, D. J. et al. Tucana B: a potentially isolated and quenched ultra-faint dwarf galaxy at D ≈ 1.4 Mpc. Astrophys. J. Lett. 935, L17 (2022).
Young, L. M., van Zee, L., Lo, K. Y., Dohm-Palmer, R. C. & Beierle, M. E. Star formation and the interstellar medium in four dwarf irregular galaxies. Astrophys. J. 592, 111–128 (2003).
Hargis, J. R. et al. Hubble Space Telescope imaging of Antlia B: star formation history and a new tip of the red giant branch distance. Astrophys. J. 888, 31 (2020).
Sand, D. J. et al. Antlia B: a faint dwarf galaxy member of the NGC 3109 association. Astrophys. J. Lett. 812, L13 (2015).
Zoutendijk, S. L. et al. The MUSE-Faint survey. III. No large dark-matter cores and no significant tidal stripping in ultra-faint dwarf galaxies. Preprint https://arxiv.org/abs/2112.09374 (2021).
Tully, R. B. et al. The Extragalactic Distance Database. Astron. J. 138, 323–331 (2009).
McQuinn, K. B. W. et al. Discovery and characterization of two ultrafaint dwarfs outside the halo of the Milky Way: Leo M and Leo K. Astrophys. J. 967, 161 (2024).
Carlin, J. L. et al. Tidal destruction in a low-mass galaxy environment: the discovery of tidal tails around DDO 44. Astrophys. J. 886, 109 (2019).
Battaglia, G., Rejkuba, M., Tolstoy, E., Irwin, M. J. & Beccari, G. A wide-area view of the Phoenix dwarf galaxy from Very Large Telescope/FORS imaging. Mon. Not. R. Astron. Soc. 424, 1113–1131 (2012).
Kacharov, N. et al. Prolate rotation and metallicity gradient in the transforming dwarf galaxy Phoenix. Mon. Not. R. Astron. Soc. 466, 2006–2023 (2017).
van de Rydt, F., Demers, S. & Kunkel, W. E. Phoenix: an intermediate dwarf galaxy in the Local Group. Astron. J. 102, 130–136 (1991).
Bouchard, A., Jerjen, H., Da Costa, G. S. & Ott, J. Detection of neutral hydrogen in early-type dwarf galaxies of the Sculptor Group. Astron. J. 130, 2058–2064 (2005).
Savino, A. et al. The Hubble Space Telescope Survey of M31 Satellite Galaxies. I. RR Lyrae-based distances and refined 3D geometric structure. Astrophys. J. 938, 101 (2022).
McNanna, M. et al. A search for faint resolved galaxies beyond the Milky Way in DES Year 6: a new faint, diffuse dwarf satellite of NGC 55. Astrophys. J. 961, 126 (2024).
Simon, J. D. & Geha, M. The kinematics of the ultra-faint Milky Way satellites: solving the missing satellite problem. Astrophys. J. 670, 313–331 (2007).
Leaman, R. et al. The comparative chemical evolution of an isolated dwarf galaxy: a VLT and Keck spectroscopic survey of WLM. Astrophys. J. 767, 131 (2013).
Taibi, S. et al. The Tucana dwarf spheroidal galaxy: not such a massive failure after all. Astron. Astrophys. 635, A152 (2020).
Barnes, D. G. & de Blok, W. J. G. On the neutral gas content and environment of NGC 3109 and the Antlia dwarf galaxy. Astron. J. 122, 825–829 (2001).
Hoffman, G. L. et al. Arecibo H i mapping of a large sample of dwarf irregular galaxies. Astrophys. J. Suppl. Ser. 105, 269–298 (1996).
Karachentsev, I. D., Makarova, L. N., Tully, R. B., Wu, P.-F. & Kniazev, A. Y. KK258, a new transition dwarf galaxy neighbouring the Local Group. Mon. Not. R. Astron. Soc. 443, 1281–1290 (2014).
Karachentsev, I. D., Makarova, L. N., Makarov, D. I., Tully, R. B. & Rizzi, L. A new isolated dSph galaxy near the Local Group. Mon. Not. R. Astron. Soc. 447, L85–L89 (2015).
Karachentsev, I. D., Kniazev, A. Y. & Sharina, M. E. The isolated dSph galaxy KKs3 in the local Hubble flow. Astron. Nachr. 336, 707–714 (2015).
Baumgardt, H. & Hilker, M. A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon. Not. R. Astron. Soc. 478, 1520–1557 (2018).
Baumgardt, H., Sollima, A. & Hilker, M. Absolute V-band magnitudes and mass-to-light ratios of Galactic globular clusters. Publ. Astron. Soc. Aust. 37, e046 (2020).
Baumgardt, H. & Vasiliev, E. Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST, and literature data. Mon. Not. R. Astron. Soc. 505, 5957–5977 (2021).
Kunder, A. et al. The Milky Way Bulge extra-tidal star survey: BH 261 (AL 3). Astron. J. 167, 21 (2024).
Simpson, J. D. The most metal-poor Galactic globular cluster: the first spectroscopic observations of ESO280-SC06. Mon. Not. R. Astron. Soc. 477, 4565–4576 (2018).
Kobulnicky, H. A. et al. Discovery of a new low-latitude Milky Way globular cluster using GLIMPSE. Astron. J. 129, 239–250 (2005).
Harris, W. E. A new catalog of globular clusters in the Milky Way. Preprint at https://arxiv.org/abs/1012.3224 (2010).
Kunder, A., Crabb, R. E., Debattista, V. P., Koch-Hansen, A. J. & Huhmann, B. M. Spectroscopic observations of obscured populations in the inner galaxy: 2MASS-GC02, Terzan 4, and the 200 km s−1 stellar peak. Astron. J. 162, 86 (2021).
Pallanca, C. et al. Internal kinematics and structure of the bulge globular cluster NGC 6569. Astrophys. J. 950, 138 (2023).
Souza, S. O. et al. Photo-chemo-dynamical analysis and the origin of the bulge globular cluster Palomar 6. Astron. Astrophys. 656, A78 (2021).
Kurtev, R., Ivanov, V. D., Borissova, J. & Ortolani, S. Obscured clusters. II. GLIMPSE-C02 – a new metal rich globular cluster in the Milky Way. Astron. Astrophys. 489, 583–587 (2008).
Strader, J. & Kobulnicky, H. A. A probable new globular cluster in the Galactic disk. Astron. J. 136, 2102–2106 (2008).
Carraro, G., Zinn, R. & Bidin, C. M. Whiting 1: the youngest globular cluster associated with the Sagittarius dwarf spheroidal galaxy. Astron. Astrophys. 466, 181–189 (2007).
Taylor, E. et al. EDGE: initial condition files. Zenodo https://doi.org/10.5281/zenodo.16536387 (2025).