Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

Article 
ADS 

Google Scholar
 

Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17, 686–695 (2022).

Article 
ADS 

Google Scholar
 

Grigorenko, A. N., Polini, M. & Novoselov, K. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

Article 
ADS 

Google Scholar
 

Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2020).

Article 

Google Scholar
 

Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

Article 
ADS 

Google Scholar
 

Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

Article 
ADS 

Google Scholar
 

Zibrov, A. A. et al. Tunable interacting composite fermion phases in a half-filled bilayer-graphene Landau level. Nature 549, 360–364 (2017).

Article 
ADS 

Google Scholar
 

Song, J. C. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).

Article 
ADS 

Google Scholar
 

Graef, H. et al. Ultra-long wavelength Dirac plasmons in graphene capacitors. J. Phys. Mater. 1, 01LT02 (2018).

Article 

Google Scholar
 

Yoshioka, K. et al. On-chip transfer of ultrashort graphene plasmon wave packets using terahertz electronics. Nat. Electron. 7, 537–544 (2024).

Article 

Google Scholar
 

Zhao, W. et al. Observation of hydrodynamic plasmons and energy waves in graphene. Nature 614, 688–693 (2023).

Article 
ADS 

Google Scholar
 

Xie, Y. et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature 572, 101–105 (2019).

Article 
ADS 

Google Scholar
 

Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).

Article 
ADS 

Google Scholar
 

Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2021).

Article 
ADS 

Google Scholar
 

Eckhardt, C. J. et al. Theory of resonantly enhanced photo-induced superconductivity. Nat. Commun. 15, 2300 (2024).

Article 
ADS 

Google Scholar
 

Curtis, J. B., Michael, M. H. & Demler, E. Local fluctuations in cavity control of ferroelectricity. Phys. Rev. Res. 5, 043118 (2023).

Article 

Google Scholar
 

Masuki, K. & Ashida, Y. Cavity moiré materials: controlling magnetic frustration with quantum light–matter interaction. Phys. Rev. B 109, 195173 (2024).

Article 
ADS 

Google Scholar
 

Riolo, R. et al. Tuning Fermi liquids with polaritonic cavities. Proc. Natl Acad. Sci. USA 122, e2407995122 (2025).

Article 

Google Scholar
 

Helmrich, F. et al. Cavity-driven attractive interactions in quantum materials. Preprint at https://arxiv.org/html/2408.00189v3 (2025).

De Liberato, S. Virtual photons in the ground state of a dissipative system. Nat. Commun. 8, 1465 (2017).

Article 
ADS 

Google Scholar
 

Forn-Díaz, P., Lamata, L., Rico, E., Kono, J. & Solano, E. Ultrastrong coupling regimes of light–matter interaction. Rev. Modern Phys. 91, 025005 (2019).

Article 
ADS 

Google Scholar
 

Frisk Kockum, A., Miranowicz, A., De Liberato, S., Savasta, S. & Nori, F. Ultrastrong coupling between light and matter. Nat. Rev. Phys. 1, 19–40 (2019).

Article 

Google Scholar
 

Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).

Article 
ADS 

Google Scholar
 

Jarc, G. et al. Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS2. Nature 622, 487–492 (2023).

Article 
ADS 

Google Scholar
 

Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science 375, 1030–1034 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Enkner, J. et al. Tunable vacuum-field control of fractional and integer quantum Hall phases. Nature 641, 884–889 (2025).

Article 

Google Scholar
 

Lin, Z. et al. Remote gate control of topological transitions in moiré superlattices via cavity vacuum fields. Proc. Natl Acad. Sci. USA 120, e2306584120 (2023).

Article 

Google Scholar
 

Gallagher, P. et al. Quantum-critical conductivity of the Dirac fluid in graphene. Science 364, 158–162 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Potts, A. M. et al. On-chip time-domain terahertz spectroscopy of superconducting films below the diffraction limit. Nano Lett. 23, 3835–3841 (2023).

Article 
ADS 

Google Scholar
 

Chen, S.-D. et al. Direct measurement of terahertz conductivity in a gated monolayer semiconductor. Nano Lett. 25, 7998–8002 (2025).

Article 
ADS 

Google Scholar
 

Seo, J. et al. On-chip terahertz spectroscopy for dual-gated van der Waals heterostructures at cryogenic temperatures. Nano Lett. 24, 15060–15067 (2024).

Article 
ADS 

Google Scholar
 

Berman, O. L., Kezerashvili, R. Y., Lozovik, Y. E. & Snoke, D. W. Bose–Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity. Philos. Trans. R. Soc. A 368, 5459–5482 (2010).

Article 
ADS 
MathSciNet 

Google Scholar
 

De Angelis, E., De Martini, F., Mataloni, P. & Giangrasso, M. Bose–Einstein partition distribution in microcavity quantum superradiance. Phys. Rev. A 64, 023809 (2001).

Article 
ADS 

Google Scholar
 

Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

Article 
ADS 

Google Scholar
 

Di Battista, G. et al. Infrared single-photon detection with superconducting magic-angle twisted bilayer graphene. Sci. Adv. 10, eadp3725 (2024).

Article 

Google Scholar
 

McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

Article 

Google Scholar
 

Karadi, C. et al. Dynamic response of a quantum point contact. JOSA B 11, 2566–2571 (1994).

Article 
ADS 

Google Scholar
 

Zhong, Z., Gabor, N. M., Sharping, J. E., Gaeta, A. L. & McEuen, P. L. Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. Nat. Nanotechnol. 3, 201–205 (2008).

Article 
ADS 

Google Scholar
 

Wang, E. et al. Superconducting nonlinear transport in optically driven high-temperature K3C60. Nat. Commun. 14, 7233 (2023).

Article 
ADS 

Google Scholar
 

Island, J. O. et al. On-chip terahertz modulation and emission with integrated graphene junctions. Appl. Phys. Lett. 116, 161104 (2020).

Article 
ADS 

Google Scholar
 

Karnetzky, C. et al. Towards femtosecond on-chip electronics based on plasmonic hot electron nano-emitters. Nat. Commun. 9, 2471 (2018).

Article 
ADS 

Google Scholar
 

Armitage, N. Electrodynamics of correlated electron systems. Preprint at https://arxiv.org/abs/0908.1126 (2009).

Kusyak, K. et al. Monolithic optoelectronic circuit design for on-chip terahertz applications. APL Photonics 10, 076117 (2025).

Article 
ADS 

Google Scholar
 

Di Paolo, F. Networks and Devices Using Planar Transmissions Lines (CRC Press, 2018).

Kim, S. et al. Electronically tunable perfect absorption in graphene. Nano Lett. 18, 971–979 (2018).

Article 
ADS 

Google Scholar
 

Castilla, S. et al. Electrical spectroscopy of polaritonic nanoresonators. Nat. Commun. 15, 8635 (2024).

Article 
ADS 

Google Scholar
 

Michael, M. H. et al. Resolving self-cavity effects in two-dimensional quantum materials. Preprint at https://arxiv.org/abs/2505.12799 (2025).

Svintsov, D. A. & Alymov, G. V. Refraction laws for two-dimensional plasmons. Phys. Rev. B 108, L121410 (2023).

Article 
ADS 

Google Scholar
 

Alonso-González, P. et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. Nat. Nanotechnol. 12, 31–35 (2017).

Article 
ADS 

Google Scholar
 

Xu, S. et al. Electronic interactions in Dirac fluids visualized by nano-terahertz spacetime interference of electron–photon quasiparticles. Sci. Adv. 10, eado5553 (2024).

Article 

Google Scholar
 

Hwang, E. & Sarma, S. D. Plasmon modes of spatially separated double-layer graphene. Phys. Rev. B 80, 205405 (2009).

Article 
ADS 

Google Scholar
 

Van Loon, E., Hafermann, H., Lichtenstein, A., Rubtsov, A. & Katsnelson, M. Plasmons in strongly correlated systems: spectral weight transfer and renormalized dispersion. Phys. Rev. Lett. 113, 246407 (2014).

Article 
ADS 

Google Scholar
 

Kumar, K., Strauf, S. & Yang, E. A systematic study of graphite local oxidation lithography parameters using an atomic force microscope. Nanosci. Nanotechnol. Lett. 2, 185–188 (2010).

Article 

Google Scholar
 

Kipp, G. et al. Data supporting Cavity electrodynamics of van der Waals heterostructures. Edmond https://doi.org/10.17617/3.YUZ9O9 (2025).