Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).

Article 
PubMed 

Google Scholar
 

Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).

Article 

Google Scholar
 

Liu, Z. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

Article 
PubMed 

Google Scholar
 

Liu, Z. et al. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13, 677–681 (2014).

Article 
PubMed 

Google Scholar
 

Lv, B. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).


Google Scholar
 

Lv, B. Q. et al. Observation of Weyl nodes in TaAs. Nat. Phys. 11, 724–727 (2015).

Article 

Google Scholar
 

Xu, S.-Y. et al. Discovery of a weyl fermion state with fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

Article 

Google Scholar
 

Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

Article 
PubMed 

Google Scholar
 

Bradlyn, B. et al. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016).

Article 
PubMed 

Google Scholar
 

Chang, G. et al. Unconventional chiral fermions and large topological fermi arcs in RhSi. Phys. Rev. Lett. 119, 206401 (2017).

Article 
PubMed 

Google Scholar
 

Sanchez, D. S. et al. Topological chiral crystals with helicoid-arc quantum states. Nature 567, 500–505 (2019).

Article 
PubMed 

Google Scholar
 

Rao, Z. et al. Observation of unconventional chiral fermions with long Fermi arcs in CoSi. Nature 567, 496–499 (2019).

Article 
PubMed 

Google Scholar
 

Schröter, N. B. et al. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759–765 (2019).

Article 

Google Scholar
 

Schröter, N. B. et al. Observation and control of maximal Chern numbers in a chiral topological semimetal. Science 369, 179–183 (2020).

Article 
PubMed 

Google Scholar
 

Vergniory, M., Elcoro, L., Felser, C., Bernevig, B. & Wang, Z. The (high quality) topological materials in the world. Nature 566, 480–485 (2019).

Article 
PubMed 

Google Scholar
 

Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019).

Article 

Google Scholar
 

Zhang, T. et al. Catalogue of topological electronic materials. Nature 566, 475–479 (2019).

Article 
PubMed 

Google Scholar
 

Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

Article 

Google Scholar
 

Wieder, B. J. et al. Topological materials discovery from crystal symmetry. Nat. Rev. Mater. 7, 196–216 (2021).

Article 

Google Scholar
 

Chang, G. et al. Topological quantum properties of chiral crystals. Nat. Mater. 17, 978–985 (2018).

Article 
PubMed 

Google Scholar
 

Flicker, F. et al. Chiral optical response of multifold fermions. Phys. Rev. B 98, 155145 (2018).

Article 

Google Scholar
 

Rees, D. et al. Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi. Sci. Adv. 6, eaba0509 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

De Juan, F., Grushin, A. G., Morimoto, T. & Moore, J. E. Quantized circular photogalvanic effect in Weyl semimetals. Nat. Comm. 8, 15995 (2017).

Article 

Google Scholar
 

Ni, Z. et al. Linear and nonlinear optical responses in the chiral multifold semimetal RhSi. npj Quantum Mater. 5, 96 (2020).

Article 

Google Scholar
 

Zhang, C.-L. et al. Ultraquantum magnetoresistance in the Kramers-Weyl semimetal candidate β-Ag2Se. Phys. Rev. B 96, 165148 (2017).

Article 

Google Scholar
 

Wan, B. et al. Theory for the negative longitudinal magnetoresistance in the quantum limit of Kramers Weyl semimetals. J. Condens. Matter Phys. 30, 505501 (2018).

Article 

Google Scholar
 

Ni, Z. et al. Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi. Nat. Comm. 12, 154 (2021).

Article 

Google Scholar
 

Wang, Z. Z. et al. Charge density wave transport in (TaSe4)2I. Solid State Commun. 46, 325–328 (1983).

Article 

Google Scholar
 

Maki, M., Kaiser, M., Zettl, A. & Grüner, G. Charge density wave transport in a novel inorganic chain compound (TaSe4)2I. Solid State Commun. 46, 497–500 (1983).

Article 

Google Scholar
 

Shi, W. et al. A charge-density-wave topological semimetal. Nat. Phys. 17, 381–387 (2021).

Article 

Google Scholar
 

Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575, 315–319 (2019).

Article 
PubMed 

Google Scholar
 

Wang, Z. & Zhang, S.-C. Chiral anomaly, charge density waves, and axion strings from Weyl semimetals. Phys. Rev. B 87, 161107 (2013).

Article 

Google Scholar
 

Sinchenko, A. A., Ballou, R., Lorenzo, J. E., Grenet, T. & Monceau, P. Does (TaSe4)2I really harbor an axionic charge density wave? Appl. Phys. Lett. 120, 063102 (2022).

Article 

Google Scholar
 

Crepaldi, A. et al. Optically induced changes in the band structure of the weyl charge-density-wave compound (TaSe4)2I. J. Phys. Mater. 5, 044006 (2022).

Article 

Google Scholar
 

Nguyen, Q. L. et al. Ultrafast x-ray scattering reveals composite amplitude collective mode in the weyl charge density wave material (TaSe4)2I. Phys. Rev. Lett. 131, 076901 (2023).

Article 
PubMed 

Google Scholar
 

Kim, S. et al. Observation of a massive phason in a charge-density-wave insulator. Nat. Mater. 22, 429–433 (2023).

Article 
PubMed 

Google Scholar
 

Lin, M.-K. et al. Unconventional spectral gaps induced by charge density waves in the weyl semimetal (TaSe4)2I. Nano Lett. 24, 8778 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Christensen, J. A. et al. Disorder and diffuse scattering in single-chirality (TaSe4)2I crystals. Phys. Rev. Mater. 8, 034202 (2024).

Article 

Google Scholar
 

Yi, H. et al. Surface charge induced dirac band splitting in a charge density wave material (TaSe4)2I. Phys. Rev. Res. 3, 013271 (2021).

Article 

Google Scholar
 

Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129–1181 (1988).

Article 

Google Scholar
 

Voit, J. Electronic structure of solids with competing periodic potentials. Science 290, 501–503 (2000).

Article 
PubMed 

Google Scholar
 

Tournier-Colletta, C. et al. Electronic instability in a zero-gap semiconductor: the charge-density wave in (TaSe4)2I. Phys. Rev. Lett. 110, 236401 (2013).

Article 
PubMed 

Google Scholar
 

van Smaalen, S., Lam, E. J. & Lüdecke, J. Structure of the charge-density wave in (TaSe4)2I. J. Phys.:Condens. Matter 13, 9923 (2001).


Google Scholar
 

Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

Article 
PubMed 

Google Scholar
 

Vergniory, M.G. et al. All topological bands of all nonmagnetic stoichiometric materials. Science 376, 816 (2022).

See Supplementary Information.

Favre-Nicolin, V. et al. Structural evidence for ta-tetramerization displacements in the charge-density-wave compound (TaSe4)2I from x-ray anomalous diffraction. Phys. Rev. Lett. 87, 015502 (2001).

Article 
PubMed 

Google Scholar
 

Fujishita, H., Shapiro, S. M., Sato, M. & Hoshino, S. A neutron scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. C Solid State Phys. 19, 3049–3057 (1986).

Article 

Google Scholar
 

Li, X.-P. et al. Type-III Weyl semimetals: (TaSe4)2I. Phys. Rev. B 103, L081402 (2021).

Article 

Google Scholar
 

Perfetti, L. et al. Spectroscopic indications of polaronic carriers in the quasi-one-dimensional conductor (TaSe4)2I. Phys. Rev. Lett. 87, 216404 (2001).

Article 
PubMed 

Google Scholar
 

Dardel, B. et al. Unusual photoemission spectral function of quasi-one-dimensional metals. Phys. Rev. Lett. 67, 3144 (1991).

Article 
PubMed 

Google Scholar
 

Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

Article 
PubMed 

Google Scholar
 

Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).

Article 
PubMed 

Google Scholar
 

Wang, Y. H. et al. Observation of a warped helical spin texture in Bi2Se3 from circular dichroism angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 107, 207602 (2011).

Article 
PubMed 

Google Scholar
 

Fu, L. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett. 103, 266801 (2009).

Article 
PubMed 

Google Scholar
 

Jung, W. et al. Warping effects in the band and angular-momentum structures of the topological insulator Bi2Te3. Phys. Rev. B 84, 245435 (2011).

Article 

Google Scholar
 

Ryu, H. et al. Photon energy dependent circular dichroism in angle-resolved photoemission from Au(111) surface states. Phys. Rev. B 95, 115144 (2017).

Article 

Google Scholar
 

Crepaldi, A. et al. Momentum and photon energy dependence of the circular dichroic photoemission in the bulk rashba semiconductors BiTeX (X=I, Br, Cl). Phys. Rev. B 89, 125408 (2014).

Article 

Google Scholar
 

Liu, Y., Bian, G., Miller, T. & Chiang, T.-C. Visualizing electronic chirality and berry phases in graphene systems using photoemission with circularly polarized light. Phys. Rev. Lett. 107, 166803 (2011).

Article 
PubMed 

Google Scholar
 

Zhang, Y., Lin, L.-F., Moreo, A., Dong, S. & Dagotto, E. First-principles study of the low-temperature charge density wave phase in the quasi-one-dimensional Weyl chiral compound (TaSe4)2I. Phys. Rev. B 101, 174106 (2020).

Article 

Google Scholar
 

Lorenzo, J. E. et al. A neutron scattering study of the quasi-one-dimensional conductor (TaSe4)2I. J. Phys. Condens. Matter 10, 5039 (1998).

Article 

Google Scholar
 

Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

Article 

Google Scholar
 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

Article 

Google Scholar
 

Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

Article 

Google Scholar
 

Gajdoš, M., Hummer, K., Kresse, G., Furthmüller, J. & Bechstedt, F. Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006).

Article 

Google Scholar
 

Steiner, S., Khmelevskyi, S., Marsmann, M. & Kresse, G. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1−xCox alloys. Phys. Rev. B 93, 224425 (2016).

Article 

Google Scholar
 

Jain, A. et al. The materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

Article 

Google Scholar
 

Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

Article 

Google Scholar
 

Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: challenges and tools. Comput. Mater. Sci. 49, 299–312 (2010).

Article 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

Article 
PubMed 

Google Scholar
 

Monkhorst, H. J. & Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188 (1976).

Article 

Google Scholar
 

Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

Article 

Google Scholar
Â