Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

Article 
ADS 

Google Scholar
 

Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

Article 
ADS 

Google Scholar
 

Salén, P. et al. Matter manipulation with extreme terahertz light: progress in the enabling THz technology. Phys. Rep. 836, 1–74 (2019).

Article 
ADS 

Google Scholar
 

Jana, K. et al. Quantum control of flying doughnut terahertz pulses. Sci. Adv. 10, eadl1803 (2024).

Article 

Google Scholar
 

Zhang, Z. et al. Terahertz-field-driven magnon upconversion in an antiferromagnet. Nat. Phys. 20, 788–793 (2024).

Article 

Google Scholar
 

Pizzuto, A. et al. Near-field terahertz nonlinear optics with blue light. Light Sci. Appl. 12, 96 (2023).

Article 
ADS 

Google Scholar
 

Jelic, V. et al. Atomic-scale terahertz time-domain spectroscopy. Nat. Photon. 18, 898–904 (2024).

Article 
ADS 

Google Scholar
 

Dong, J. et al. Single-shot ultrafast terahertz photography. Nat. Commun. 14, 1704 (2023).

Article 
ADS 

Google Scholar
 

Liao, G. et al. Multimillijoule coherent terahertz bursts from picosecond laser-irradiated metal foils. Proc. Natl Acad. Sci. USA 116, 3994–3999 (2019).

Article 
ADS 

Google Scholar
 

Kumar, M. et al. Intense multicycle THz pulse generation from laser-produced nanoplasmas. Sci. Rep. 13, 4233 (2023).

Article 
ADS 

Google Scholar
 

Wu, X. et al. Generation of 13.9-mJ terahertz radiation from lithium niobate materials. Adv. Mater. 35, 2208947 (2023).

Article 

Google Scholar
 

Koulouklidis, A. D. et al. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 11, 292 (2020).

Article 
ADS 

Google Scholar
 

Pak, T. et al. Multi-millijoule terahertz emission from laser-wakefield-accelerated electrons. Light Sci. Appl. 12, 37 (2023).

Article 
ADS 

Google Scholar
 

Liu, B. et al. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz. Opt. Lett. 42, 129–131 (2017).

Article 
ADS 

Google Scholar
 

Shalaby, M. et al. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness. Nat. Commun. 6, 5976 (2015).

Article 
ADS 

Google Scholar
 

Yang, H. et al. Efficient generation and frequency modulation of quasi-monochromatic terahertz wave in lithium niobate subwavelength waveguide. Opt. Express 25, 14766–14773 (2017).

Article 
ADS 

Google Scholar
 

Andruszkow, J. et al. First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85, 3825 (2000).

Article 
ADS 

Google Scholar
 

Perenboom, J. A. A. J. et al. Developments at the high field magnet laboratory in Nijmegen. J. Low Temp. Phys. 170, 520–530 (2013).

Article 
ADS 

Google Scholar
 

Kawase, K. et al. Extremely high-intensity operation of a THz free-electron laser using an electron beam with a higher bunch charge. Nucl. Instrum. Methods A 960, 163582 (2020).

Article 

Google Scholar
 

Knyazev, B. A. et al. Novosibirsk terahertz free electron laser: instrumentation development and experimental achievements. Meas. Sci. Technol. 21, 054017 (2010).

Article 
ADS 

Google Scholar
 

Krasilnikov, M. et al. THz SASE FEL at PITZ: lasing at a wavelength of 100 µm. In Proc. 14th International Particle Accelerator Conference (IPAC’23) 3948–3951 (JACoW Publishing, 2023).

Krasilnikov, M. et al. First high peak and average power single-pass THz free-electron laser in operation. Phys. Rev. Accel. Beams 28, 030701 (2025).

Article 
ADS 

Google Scholar
 

Fisher, A. et al. Single-pass high-efficiency terahertz free-electron laser. Nat. Photon. 16, 441–447 (2022).

Article 
ADS 

Google Scholar
 

Gover, A. et al. Superradiant and stimulated-superradiant emission of bunched electron beams. Rev. Mod. Phys. 91, 035003 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Zhang, Z. et al. A high-power, high-repetition-rate THz source for pump-probe experiments at Linac Coherent Light Source II. J. Synchrotron Radiat. 27, 890–901 (2020).

Article 

Google Scholar
 

Tiedtke, K. et al. The soft X-ray free-electron laser FLASH at DESY: beamlines, diagnostics and end-stations. New J. Phys. 11, 023029 (2009).

Article 
ADS 

Google Scholar
 

Chiadroni, E. et al. The SPARC linear accelerator based terahertz source. Appl. Phys. Lett. 102, 094101 (2013).

Article 
ADS 

Google Scholar
 

Fisher, A. et al. Towards higher frequencies in a compact prebunched waveguide THz-FEL. Nat. Commun. 15, 7582 (2024).

Article 
ADS 

Google Scholar
 

Power, J. G. & Jing, C. Temporal laser pulse shaping for RF photocathode guns: the cheap and easy way using UV birefringent crystals. AIP Conf. Proc. 1086, 689–694 (2009).

Article 
ADS 

Google Scholar
 

Musumeci, P. et al. Nonlinear longitudinal space charge oscillations in relativistic electron beams. Phys. Rev. Lett. 106, 184801 (2011).

Article 
ADS 

Google Scholar
 

Dunning, M. et al. Generating periodic terahertz structures in a relativistic electron beam through frequency down-conversion of optical lasers. Phys. Rev. Lett. 109, 074801 (2012).

Article 
ADS 

Google Scholar
 

Zhang, Z. et al. Tunable high-intensity electron bunch train production based on nonlinear longitudinal space charge oscillation. Phys. Rev. Lett. 116, 184801 (2016).

Article 
ADS 

Google Scholar
 

Zhang, Z. et al. Generation of high-power, tunable terahertz radiation from laser interaction with a relativistic electron beam. Phys. Rev. Accel. Beams 20, 050701 (2017).

Article 
ADS 

Google Scholar
 

Zhang, K. et al. A compact accelerator-based light source for high-power, full-bandwidth tunable coherent THz generation. Appl. Sci. 11, 11850 (2021).

Article 

Google Scholar
 

Lemery, F. et al. Passive ballistic microbunching of non-ultra relativistic electron bunches using electromagnetic wakefields in dielectric-lined waveguides. Phys. Rev. Lett. 122, 044801 (2019).

Article 
ADS 

Google Scholar
 

Liang, Y. et al. Widely tunable electron bunch trains for the generation of high-power narrowband 1–10 THz radiation. Nat. Photon. 17, 259–263 (2023).

Article 
ADS 

Google Scholar
 

Liu, B. et al. The SXFEL upgrade: from test facility to user facility. Appl. Sci. 12, 176 (2022).

Article 

Google Scholar
 

Huang, Z. et al. Measurements of the linac coherent light source laser heater and its impact on the x-ray free-electron laser performance. Phys. Rev. ST Accel. Beams 13, 020703 (2010).

Article 
ADS 

Google Scholar
 

Cesar, D. et al. Electron beam shaping via laser heater temporal shaping. Phys. Rev. Accel. Beams 24, 110703 (2021).

Article 
ADS 

Google Scholar
 

Marinelli, A. et al. Optical shaping of X-ray free-electron lasers. Phys. Rev. Lett. 116, 254801 (2016).

Article 
ADS 

Google Scholar
 

Roussel, E. et al. Multicolor high-gain free-electron laser driven by seeded microbunching instability. Phys. Rev. Lett. 115, 214801 (2015).

Article 
ADS 

Google Scholar
 

Weling, A. S. et al. Novel sources and detectors for coherent tunable narrow-band terahertz radiation in free space. J. Opt. Soc. Am. Opt. Phys. 13, 2783–2791 (1996).

Article 
ADS 

Google Scholar
 

Bielawski, S. et al. Tunable narrowband terahertz emission from mastered laser-electron beam interaction. Nat. Phys. 4, 390–393 (2008).

Article 

Google Scholar
 

Saldin, E. L. et al. Longitudinal space charge-driven microbunching instability in the TESLA Test Facility linac. Nucl. Instrum. Methods A 528, 355–359 (2004).

Article 
ADS 

Google Scholar
 

Bonifacio, R. et al. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

Article 

Google Scholar
 

Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photon. 6, 699–704 (2012).

Article 
ADS 

Google Scholar
 

Kang, Y. et al. Generating high-power, frequency tunable coherent THz pulse in an X-ray free-electron laser for THz pump and X-ray probe experiments. Photonics 10, 133 (2023).

Article 

Google Scholar
 

Zapolnova, E. et al. THz pulse doubler at FLASH: double pulses for pump–probe experiments at X-ray FELs. J. Synchrotron Rad. 25, 39–46 (2018).

Article 

Google Scholar
 

Zhang, H. et al. The Linac Coherent Light Source II photoinjector laser infrastructure. High Power Laser Sci. Eng. 12, e51 (2024).

Article 

Google Scholar
 

Zhang, H. et al. The photoinjector laser system at LCLS-II. In Proc. Laser Congress 2024, Technical Digest Series AM4A.2 (Optica Publishing Group, 2024).

Jiang, Z. et al. Design and status of SHINE injector. In Proc. 10th International Particle Accelerator Conference (IPAC’19) TUPRB053 (JACoW Publishing, 2019).

Jia, H. et al. High-brightness megahertz-rate beam from a direct-current and superconducting radio-frequency combined photocathode gun. Phys. Rev. Res. 6, 043165 (2024).

Article 

Google Scholar
 

Xu, H. et al. Gamma-ray flux in gated CW operation of CO2 laser at SLEGS. Nucl. Instrum. Methods A 1073, 170249 (2025).

Yu, L. et al. Theory of high gain harmonic generation: an analytical estimate. Nucl. Instrum. Methods A 483, 493–498 (2002).

Article 
ADS 

Google Scholar
 

Wu, J. & Bolton, P. R. Coherent X-ray Production by Cascading Stages of High Gain Harmonic Generation Free Electron Lasers Seeded by IR Laser Driven High-Order Harmonic Generation. Report No. SLAC-PUB-12124 (SLAC National Accelerator Laboratory, 2006).

Floettmann, K. A Space Charge Tracking Algorithm (DESY, 2017); https://www.desy.de/~mpyflo/

Borland, M. ELEGANT: A Flexible SDDS-Compliant Code for Accelerator Simulation. Report No. LS-287 (Argonne National Laboratory, 2000).

Reiche, S. GENESIS 1.3: a fully 3D time-dependent FEL simulation code. Nucl. Instrum. Methods A 429, 243–248 (1999).

Article 
ADS 

Google Scholar