Ahn, K.-H., Hariki, A., Lee, K.-W. & Kuneš, J. Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

ADS 
CAS 

Google Scholar
 

Naka, M. et al. Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).


Google Scholar
 

Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).


Google Scholar
 

Ezawa, M. Third-order and fifth-order nonlinear spin-current generation in g-wave and i-wave altermagnets and perfectly nonreciprocal spin current in f-wave magnets. Phys. Rev. B 111, 125420 (2025).

Yu, Y. et al. Odd-parity magnetism driven by antiferromagnetic exchange. Phys. Rev. Lett. 135, 046701 (2025).

Hirsch, J. E. Spin-split states in metals. Phys. Rev. B 41, 6820–6827 (1990).

ADS 
CAS 

Google Scholar
 

Wu, C., Sun, K., Fradkin, E. & Zhang, S.-C. Fermi liquid instabilities in the spin channel. Phys. Rev. B 75, 115103 (2007).

ADS 

Google Scholar
 

Jung, J., Polini, M. & MacDonald, A. H. Persistent current states in bilayer graphene. Phys. Rev. B 91, 155423 (2015).

ADS 

Google Scholar
 

Kiselev, E. I., Scheurer, M. S., Wölfle, P. & Schmalian, J. Limits on dynamically generated spin-orbit coupling: absence of l = 1 Pomeranchuk instabilities in metals. Phys. Rev. B 95, 125122 (2017).

ADS 

Google Scholar
 

Wu, Y.-M., Klein, A. & Chubukov, A. V. Conditions for l = 1 Pomeranchuk instability in a Fermi liquid. Phys. Rev. B 97, 165101 (2018).

ADS 
CAS 

Google Scholar
 

Hellenes, A. B. et al. P-wave magnets. Preprint at https://arxiv.org/abs/2309.01607 (2024).

Jungwirth, T. et al. From superfluid 3He to altermagnets. Preprint at https://arxiv.org/abs/2411.00717 (2024).

Ezawa, M. Purely electrical detection of the spin-splitting vector in p-wave magnets based on linear and nonlinear conductivities. Phys. Rev. B 112, 125412 (2025).

Brekke, B., Sukhachov, P., Giil, H. G., Brataas, A. & Linder, J. Minimal models and transport properties of unconventional p-wave magnets. Phys. Rev. Lett. 133, 236703 (2024).

ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Ezawa, M. Topological insulators and superconductors based on p-wave magnets: electrical control and detection of a domain wall. Phys. Rev. B 110, 165429 (2024).

ADS 
CAS 

Google Scholar
 

Gladyshevskii, R. E., Strusievicz, O. R., Cenzual, K. & Parthé, E. Structure of Gd3Ru4Al12, a new member of the EuMg5.2 structure family with minority-atom clusters. Acta Crystallogr. B 49, 474–478 (1993).

ADS 

Google Scholar
 

Niermann, J. & Jeitschko, W. Ternary rare earth (R) transition metal aluminides R3T4Al12 (T = Ru and Os) with Gd3Ru4Al12 type structure. Z. Anorg. Allg. Chem. 628, 2549–2556 (2002).

CAS 

Google Scholar
 

Nakamura, S. et al. Spin trimer formation in the metallic compound Gd3Ru4Al12 with a distorted kagome lattice structure. Phys. Rev. B 98, 054410 (2018).

ADS 
CAS 

Google Scholar
 

Matsumura, T., Ozono, Y., Nakamura, S., Kabeya, N. & Ochiai, A. Helical ordering of spin trimers in a distorted kagomé lattice of Gd3Ru4Al12 studied by resonant X-ray diffraction. J. Phys. Soc. Jpn 88, 023704 (2019).

ADS 

Google Scholar
 

Lovesey, S. W. & Collins, S. P. X-ray Scattering and Absorption by Magnetic Materials Oxford Series on Synchrotron Radiation No. 1 (Clarendon Press, Oxford Univ. Press, 1996).

McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

ADS 

Google Scholar
 

Okumura, S., Kato, Y. & Motome, Y. Lock-in of a chiral soliton lattice by itinerant electrons. J. Phys. Soc. Jpn 87, 033708 (2018).

ADS 

Google Scholar
 

Hodt, E. W., Bentmann, H. & Linder, J. Fate of p-wave spin polarization in helimagnets with Rashba spin-orbit coupling. Phys. Rev. B 111, 205416 (2025)

Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

ADS 

Google Scholar
 

Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Ghimire, N. J. et al. Large anomalous Hall effect in the chiral-lattice antiferromagnet CoNb3S6. Nat. Commun. 9, 3280 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Takagi, H. et al. Spontaneous topological Hall effect induced by non-coplanar antiferromagnetic order in intercalated van der Waals materials. Nat. Phys. 19, 961–968 (2023).

CAS 

Google Scholar
 

Park, P. et al. Tetrahedral triple-Q magnetic ordering and large spontaneous Hall conductivity in the metallic triangular antiferromagnet Co1/3TaS2. Nat. Commun. 14, 8346 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Šmejkal, L., MacDonald, A. H., Sinova, J., Nakatsuji, S. & Jungwirth, T. Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

ADS 

Google Scholar
 

Hedayati, A. A. & Salehi, M. Transverse spin current at normal-metal /p-wave magnet junctions. Phys. Rev. B 111, 035404 (2025).

Álvarez Pari, N. A., Jaeschke-Ubiergo, R., Chakraborty, A., Šmejkal, L. & Sinova, J. Nonrelativistic linear Edelstein effect in helical EuIn2As2. Phys. Rev. B 112, 024404 (2025).

Choy, T. P., Edge, J. M., Akhmerov, A. R. & Beenakker, C. W. J. Majorana fermions emerging from magnetic nanoparticles on a superconductor without spin–orbit coupling. Phys. Rev. B 84, 195442 (2011).

ADS 

Google Scholar
 

Martin, I. & Morpurgo, A. F. Majorana fermions in superconducting helical magnets. Phys. Rev. B 85, 144505 (2012).

ADS 

Google Scholar
 

Nadj-Perge, S., Drozdov, I. K., Bernevig, B. A. & Yazdani, A. Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor. Phys. Rev. B 88, 020407 (2013).

ADS 

Google Scholar
 

Klinovaja, J., Stano, P., Yazdani, A. & Loss, D. Topological superconductivity and Majorana fermions in RKKY systems. Phys. Rev. Lett. 111, 186805 (2013).

ADS 
PubMed 

Google Scholar
 

Maeda, K., Lu, B., Yada, K. & Tanaka, Y. Theory of tunneling spectroscopy in unconventional p-wave magnet-superconductor hybrid structures. J. Phys. Soc. Jpn 93, 114703 (2024).

ADS 

Google Scholar
 

Song, Q. et al. Electrical switching of a p-wave magnet. Nature 642, 64–70 (2025).

ADS 
CAS 
PubMed 

Google Scholar
 

Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 (1998).

ADS 
CAS 

Google Scholar
 

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

ADS 
CAS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

ADS 
CAS 
PubMed 

Google Scholar
 

Harmon, B., Antropov, V., Liechtenstein, A., Solovyev, I. & Anisimov, V. Calculation of magneto-optical properties for 4f systems: LSDA + Hubbard U results. J. Phys. Chem. Solids 56, 1521–1524 (1995).

ADS 
CAS 

Google Scholar
 

Shick, A. B., Liechtenstein, A. I. & Pickett, W. E. Implementation of the LDA+U method using the full-potential linearized augmented plane-wave basis. Phys. Rev. B 60, 10763–10769 (1999).

ADS 
CAS 

Google Scholar
 

Yamada, R. Dataset for: A metallic p-wave magnet with commensurate spin helix. Zenodo https://doi.org/10.5281/zenodo.17035626 (2025).

Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

CAS 

Google Scholar
 

Chen, T. et al. Anomalous transport due to Weyl fermions in the chiral antiferromagnets Mn3X, X = Sn, Ge. Nat. Commun. 12, 572 (2021).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, Z. H. et al. Transition from anomalous Hall effect to topological Hall effect in hexagonal non-collinear magnet Mn3Ga. Sci. Rep. 7, 515 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hayashi, H. et al. Large anomalous Hall effect observed in the cubic-lattice antiferromagnet Mn3Sb with kagome lattice. Phys. Rev. B 108, 075140 (2023).

ADS 
CAS 

Google Scholar
 

Zuniga-Cespedes, B. E. et al. Observation of an anomalous Hall effect in single-crystal Mn3Pt. New J. Phys. 25, 023029 (2023).

ADS 

Google Scholar
 

Sürgers, C. et al. Anomalous Nernst effect in the noncollinear antiferromagnet Mn5Si3. Commun. Mater. 5, 176 (2024).


Google Scholar
 

Kotegawa, H. et al. Large anomalous Hall effect and unusual domain switching in an orthorhombic antiferromagnetic material NbMnP. npj Quantum Mater. 8, 56 (2023).

ADS 
CAS 

Google Scholar
 

Kotegawa, H. et al. Large spontaneous Hall effect with flexible domain control in the antiferromagnetic material TaMnP. Phys. Rev. B 110, 214417 (2024).

ADS 
CAS 

Google Scholar
 

Kotegawa, H. et al. Large anomalous Hall conductivity derived from an f-electron collinear antiferromagnetic structure. Phys. Rev. Lett. 133, 106301 (2024).

ADS 
CAS 
PubMed 

Google Scholar