Fulton, B. J. et al. The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).

Article 
ADS 

Google Scholar
 

Bean, J. L., Raymond, S. N. & Owen, J. E. The nature and origins of sub-Neptune size planets. J. Geophys. Res. Planets 126, e2020JE006639 (2021).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bitsch, B. et al. Dry or water world? How the water contents of inner sub-Neptunes constrain giant planet formation and the location of the water ice line. Astron. Astrophys. 649, L5 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Misener, W., Schlichting, H. E. & Young, E. D. Atmospheres as windows into sub-Neptune interiors: coupled chemistry and structure of hydrogen–silane–water envelopes. Mon. Not. R. Astron. Soc. 524, 981–992 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Schlichting, H. E. & Young, E. D. Chemical equilibrium between cores, mantles, and atmospheres of super-Earths and sub-Neptunes and implications for their compositions, interiors, and evolution. Planet. Sci. J. 3, 127 (2022).

Article 

Google Scholar
 

Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).

Article 
ADS 
CAS 

Google Scholar
 

Ikoma, M. & Genda, H. Constraints on the mass of a habitable planet with water of nebular origin. Astrophys. J. 648, 696 (2006).

Article 
ADS 
CAS 

Google Scholar
 

Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Young, E. D., Shahar, A. & Schlichting, H. E. Earth shaped by primordial H2 atmospheres. Nature 616, 306–311 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Howard, A. W. et al. Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201, 15 (2012).

Article 
ADS 

Google Scholar
 

Owen, J. E. & Wu, Y. Kepler planets: a tale of evaporation. Astrophys. J. 775, 105 (2013).

Article 
ADS 

Google Scholar
 

Ginzburg, S., Schlichting, H. E. & Sari, R. Core-powered mass-loss and the radius distribution of small exoplanets. Mon. Not. R. Astron. Soc. 476, 759–765 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Zeng, L. et al. Growth model interpretation of planet size distribution. Proc. Natl Acad. Sci. USA 116, 9723–9728 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Venturini, J. & Helled, R. Jupiter’s heavy-element enrichment expected from formation models. Astron. Astrophys. 634, A31 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Luque, R. & Pallé, E. Density, not radius, separates rocky and water-rich small planets orbiting M dwarf stars. Science 377, 1211–1214 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Piaulet, C. et al. Evidence for the volatile-rich composition of a 1.5-Earth-radius planet. Nat. Astron. 7, 206–222 (2022).

ADS 

Google Scholar
 

Piaulet-Ghorayeb, C. et al. JWST/NIRISS reveals the water-rich “Steam World” atmosphere of GJ 9827 d. Astrophys. J. Lett. 974, L10 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345, 38–48 (2012).

Article 
ADS 

Google Scholar
 

Kite, E. S., Fegley, B. Jr, Schaefer, L. & Ford, E. B. Superabundance of exoplanet sub-neptunes explained by fugacity crisis. Astrophys. J. Lett. 887, L33 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Sabat, K. C., Rajput, P., Paramguru, R. K., Bhoi, B. & Mishra, B. K. Reduction of oxide minerals by hydrogen plasma: an overview. Plasma Chem. Plasma Process. 34, 1–23 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Kimura, T. & Ikoma, M. Predicted diversity in water content of terrestrial exoplanets orbiting M dwarfs. Nat. Astron. 6, 1296–1307 (2022).

Article 
ADS 

Google Scholar
 

Krissansen-Totton, J., Wogan, N., Thompson, M. & Fortney, J. J. The erosion of large primary atmospheres typically leaves behind substantial secondary atmospheres on temperate rocky planets. Nat. Commun. 15, 8374 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horn, H. W., Prakapenka, V., Chariton, S., Speziale, S. & Shim, S.-H. Reaction between hydrogen and ferrous/ferric oxides at high pressures and high temperatures—implications for sub-neptunes and super-earths. Planet. Sci. J. 4, 30 (2023).

Article 
CAS 

Google Scholar
 

Kim, T. et al. Stability of hydrides in sub-Neptune exoplanets with thick hydrogen-rich atmospheres. Proc. Natl Acad. Sci. USA 120, e2309786120 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shinozaki, A. et al. Influence of H2 fluid on the stability and dissolution of Mg2SiO4 forsterite under high pressure and high temperature. Am. Mineral. 98, 1604–1609 (2013).

Article 
ADS 
CAS 

Google Scholar
 

Shinozaki, A. et al. Formation of SiH4 and H2O by the dissolution of quartz in H2 fluid under high pressure and temperature. Am. Mineral. 99, 1265–1269 (2014).

Article 
ADS 

Google Scholar
 

Stökl, A., Dorfi, E. A., Johnstone, C. P. & Lammer, H. Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M⊕ in the habitable zone. Astrophys. J. 825, 86 (2016).

Article 
ADS 

Google Scholar
 

Vazan, A., Ormel, C. W., Noack, L. & Dominik, C. Contribution of the core to the thermal evolution of sub-Neptunes. Astrophys. J. 869, 163 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Goncharov, A. F. et al. X-ray diffraction in the pulsed laser heated diamond anvil cell. Rev. Sci. Instrum. 81, 113902 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Shen, G. & Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures. J. Geophys. Res. Solid Earth 100, 17699–17713 (1995).

Article 
CAS 

Google Scholar
 

Gupta, A., Stixrude, L. & Schlichting, H. E. The miscibility of hydrogen and water in planetary atmospheres and interiors. Astrophys. J. Lett. 982, L35 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Kim, T. et al. Atomic-scale mixing between MgO and H2O in the deep interiors of water-rich planets. Nat. Astron. 5, 815–821 (2021).

Article 
ADS 

Google Scholar
 

Hirschmann, M. M., Aubaud, C. & Withers, A. C. Storage capacity of H2O in nominally anhydrous minerals in the upper mantle. Earth Planet. Sci. Lett. 236, 167–181 (2005).

Article 
ADS 
CAS 

Google Scholar
 

Karki, B. B., Ghosh, D. B. & Bajgain, S. K. in Magmas Under Pressure 419–453 (Elsevier, 2018).

Putirka, K. D. & Xu, S. Polluted white dwarfs reveal exotic mantle rock types on exoplanets in our solar neighborhood. Nat. Commun. 12, 6168 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Aguichine, A., Mousis, O., Deleuil, M. & Marcq, E. Mass–radius relationships for irradiated ocean planets. Astrophys. J. 914, 84 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Vazan, A., Sari, R. & Kessel, R. A new perspective on the interiors of ice-rich planets: ice-rock mixture instead of ice on top of rock. Astrophys. J. 926, 150 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Luo, H., Dorn, C. & Deng, J. The interior as the dominant water reservoir in super-Earths and sub-Neptunes. Nat. Astron. 8, 1399–1407 (2024).

Article 
ADS 

Google Scholar
 

Venturini, J., Guilera, O. M., Haldemann, J., Ronco, M. P. & Mordasini, C. The nature of the radius valley: hints from formation and evolution models. Astron. Astrophys. 643, L1 (2020).

Article 
ADS 

Google Scholar
 

Burn, R. et al. A radius valley between migrated steam worlds and evaporated rocky cores. Nat. Astron. 8, 463–471 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Madhusudhan, N., Piette, A. A. A. & Constantinou, S. Habitability and biosignatures of hycean worlds. Astrophys. J. 918, 1 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Cherubim, C. et al. TOI-1695 b: a water world orbiting an early-M dwarf in the planet radius valley. Astron. J. 165, 167 (2023).

Article 
ADS 

Google Scholar
 

Osborne, H. L. M. et al. TOI-544 b: a potential water-world inside the radius valley in a two-planet system. Mon. Not. R. Astron. Soc. 527, 11138–11157 (2023).

Article 
ADS 

Google Scholar
 

Izidoro, A. et al. The exoplanet radius valley from gas-driven planet migration and breaking of resonant chains. Astrophys. J. Lett. 939, L19 (2022).

Article 
ADS 

Google Scholar
 

Piermarini, G. J., Block, S., Barnett, J. D. & Forman, R. A. Calibration of the pressure dependence of the R1 ruby fluorescence line to 195 kbar. J. Appl. Phys. 46, 2774–2780 (1975).

Article 
ADS 
CAS 

Google Scholar
 

Prakapenka, V. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press. Res. 28, 225–235 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Deemyad, S. et al. Pulsed laser heating and temperature determination in a diamond anvil cell. Rev. Sci. Instrum. 76, 125104 (2005).

Article 
ADS 

Google Scholar
 

Fu, S., Chariton, S., Prakapenka, V. B., Chizmeshya, A. & Shim, S.-H. Stable hexagonal ternary alloy phase in Fe-Si-H at 28.6–42.2 GPa and 3000 K. Phys. Rev. B 105, 104111 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Fu, S., Chariton, S., Prakapenka, V. B. & Shim, S.-H. Core origin of seismic velocity anomalies at Earth’s core–mantle boundary. Nature 615, 646–651 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kulka, B. L., Dolinschi, J. D., Leinenweber, K. D., Prakapenka, V. B. & Shim, S.-H. The bridgmanite–akimotoite–majorite triple point determined in large volume press and laser-heated diamond anvil cell. Minerals 10, 67 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Shim, S.-H. PeakPo: a python software for x-ray diffraction analysis at high pressure and high temperature. Zenodo https://doi.org/10.5281/zenodo.3376238 (2019).

Ye, Y., Prakapenka, V., Meng, Y. & Shim, S.-H. Intercomparison of the gold, platinum, and MgO pressure scales up to 140 GPa and 2500 K. J. Geophys. Res. Solid Earth 122, 3450–3464 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Dewaele, A., Fiquet, G. & Gillet, P. Temperature and pressure distribution in the laser-heated diamond–anvil cell. Rev. Sci. Instrum. 69, 2421–2426 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Holtgrewe, N., Greenberg, E., Prescher, C., Prakapenka, V. B. & Goncharov, A. F. Advanced integrated optical spectroscopy system for diamond anvil cell studies at GSECARS. High Press. Res. 39, 457–470 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Vazan, A., Helled, R., Kovetz, A. & Podolak, M. Convection and mixing in giant planet evolution. Astrophys. J. 803, 32 (2015).

Article 
ADS 

Google Scholar
 

Saumon, D., Chabrier, G. & van Horn, H. M. An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995).

Article 
ADS 
CAS 

Google Scholar
 

Vazan, A., Kovetz, A., Podolak, M. & Helled, R. The effect of composition on the evolution of giant and intermediate-mass planets. Mon. Not. R. Astron. Soc. 434, 3283–3292 (2013).

Article 
ADS 

Google Scholar
 

Freedman, R. S. et al. Gaseous mean opacities for giant planet and ultracool dwarf atmospheres over a range of metallicities and temperatures. Astrophys. J. Suppl. Ser. 214, 25 (2014).

Article 
ADS 

Google Scholar
 

Shim, S.-H. Experimental data for hydrogen-silicate reaction [Data set]. Zenodo https://doi.org/10.5281/zenodo.15586691 (2025).

Shim, S.-H. Jupyter notebooks for Supplementary Codes (0.0.1). Zenodo https://doi.org/10.5281/zenodo.15678598 (2025).

Sakamaki, K. et al. Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core. Phys. Earth Planet. Interiors 174, 192–201 (2009).

Article 
ADS 
CAS 

Google Scholar
 

Mosenfelder, J. L., Asimow, P. D. & Ahrens, T. J. Thermodynamic properties of Mg2SiO4 liquid at ultra-high pressures from shock measurements to 200 GPa on forsterite and wadsleyite. J. Geophys. Res. Solid Earth 112, B06208 (2007).

Article 
ADS 

Google Scholar
 

Ohtani, E. Melting relation of Fe2SiO4 up to about 200 kbar. J. Phys. Earth 27, 189–208 (1979).

Article 
CAS 

Google Scholar
 

Andrault, D. et al. Melting behavior of SiO2 up to 120 GPa. Phys. Chem. Miner. 47, 10 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Zha, C., Liu, H., Tse, J. S. & Hemley, R. J. Melting and high P–T transitions of hydrogen up to 300 GPa. Phys. Rev. Lett. 119, 075302 (2017).

Article 
PubMed 

Google Scholar
 

Narygina, O. et al. X-ray diffraction and Mössbauer spectroscopy study of fcc iron hydride FeH at high pressures and implications for the composition of the Earth’s core. Earth Planet. Sci. Lett. 307, 409–414 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Thompson, E. et al. High-pressure geophysical properties of fcc phase FeHX. Geochem. Geophys. Geosyst. 19, 305–314 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Kato, C. et al. Stability of fcc phase FeH to 137 GPa. Am. Mineral. 105, 917–921 (2020).

Article 
ADS 

Google Scholar
 

Tagawa, S., Gomi, H., Hirose, K. & Ohishi, Y. High-temperature equation of state of FeH: implications for hydrogen in Earth’s inner core. Geophys. Res. Lett. 49, e2021GL096260 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Ikuta, D. et al. Interstitial hydrogen atoms in face-centered cubic iron in the Earth’s core. Sci. Rep. 9, 7108 (2019).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Shibazaki, Y. et al. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1–H alloy. Phys. Earth Planet. Inter. 228, 192–201 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Ohta, K., Suehiro, S., Hirose, K. & Ohishi, Y. Electrical resistivity of fcc phase iron hydrides at high pressures and temperatures. Comptes Rendus Geosci. 351, 147–153 (2019).

Article 
ADS 

Google Scholar
 

Dorogokupets, P. I., Dymshits, A. M., Litasov, K. D. & Sokolova, T. S. Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci. Rep. 7, 41863 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Piet, H. et al. Superstoichiometric alloying of H and close-packed Fe-Ni metal under high pressures: implications for hydrogen storage in planetary core. Geophys. Res. Lett. 50, e2022GL101155 (2023).

Article 
ADS 
CAS 

Google Scholar