Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Philos. Trans. R. Soc. A 369, 842–867 (2011).

Article 

Google Scholar
 

Niazi, H. et al. Global peak water limit of future groundwater withdrawals. Nat. Sustain. 7, 413–422 (2024).

Article 

Google Scholar
 

Werner, A. D. et al. Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Res. 51, 3–26 (2013).

Article 

Google Scholar
 

Han, D., Post, V. E. A. & Song, X. Groundwater salinization processes and reversibility of seawater intrusion in coastal carbonate aquifers. J. Hydrol. 531, 1067–1080 (2015).

Article 
CAS 

Google Scholar
 

Barlow, P. M. & Leake, S. A. Streamflow Depletion by Wells–Understanding and Managing the Effects of Groundwater Pumping on Streamflow (USGS, 2012); https://pubs.usgs.gov/circ/1376/pdf/circ1376_barlow_report_508.pdf

Jasechko, S. et al. Rapid groundwater decline and some cases of recovery in aquifers globally. Nature 625, 715–721 (2024).

Article 
CAS 

Google Scholar
 

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

Article 
CAS 

Google Scholar
 

Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).

Article 

Google Scholar
 

Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. Camb. Philos. Soc. 81, 163–182 (2006).

Article 

Google Scholar
 

Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

Article 

Google Scholar
 

Hoekstra, A. Y. in Assessing and Measuring Environmental Impact and Sustainability (ed. Klemeš, J. J.) 221–254 (Butterworth-Heinemann, 2015).

Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 15 (2019).

Article 

Google Scholar
 

Greenwood, E. E. et al. Mapping safe drinking water use in low- and middle-income countries. Science 385, 784–790 (2024).

Article 
CAS 

Google Scholar
 

China Industry Statistical Yearbook (China Statistics, 2022).

Hou, S. et al. Tracking grid-level freshwater boundary exceedance along global supply chains from consumption to impact. Nat. Water 3, 439–448 (2025).

Article 

Google Scholar
 

World Water Development Report 2024 (UNESCO, 2024); https://unesdoc.unesco.org/ark:/48223/pf0000388948

The United Nations World Water Development Report 2014 (UN-Water, 2014).

Arora, N. K. & Mishra, I. Sustainable development goal 6: global water security. Environ. Sustain. 5, 271–275 (2022).

Article 

Google Scholar
 

Grafton, R. Q. et al. Rethinking responses to the world’s water crises. Nat. Sustain. 8, 11–21 (2025).

Article 

Google Scholar
 

Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M. & Mekonnen, M. M. The Water Footprint Assessment Manual: Setting the Global Standard (Earthscan, 2011).

Yang, H. & Zehnder, A. “Virtual water”: an unfolding concept in integrated water resources management. Water Resour. Res. 43, W12301 (2007).

Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

Article 
CAS 

Google Scholar
 

Gerbens-Leenes, W., Hoekstra, A. Y. & van der Meer, T. H. The water footprint of bioenergy. Proc. Natl Acad. Sci. USA 106, 10219–10223 (2009).

Article 
CAS 

Google Scholar
 

Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

Article 

Google Scholar
 

Mekonnen, M. M. et al. Trends and environmental impacts of virtual water trade. Nat. Rev. Earth Environ. 5, 890–905 (2024).

Article 

Google Scholar
 

Global Resources Outlook 2024: Bend the Trend—Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024).

Tzachor, A., Wang, H. & Richards, C. E. Addressing the excessive water consumption of materials manufacturing. Nat. Water 2, 4–7 (2024).

Article 

Google Scholar
 

Gerbens-Leenes, P. W., Hoekstra, A. Y. & Bosman, R. The blue and grey water footprint of construction materials: steel, cement and glass. Water Resour. Ind. 19, 1–12 (2018).

Article 

Google Scholar
 

Lutter, S., Pfister, S., Giljum, S., Wieland, H. & Mutel, C. Spatially explicit assessment of water embodied in European trade: a product-level multi-regional input–output analysis. Glob. Environ. Change 38, 171–182 (2016).

Article 

Google Scholar
 

Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

Article 

Google Scholar
 

Zhang, Y. et al. Environmental footprint of aluminum production in China. J. Clean. Prod. 133, 1242–1251 (2016).

Article 
CAS 

Google Scholar
 

Feng, K., Chapagain, A., Suh, S., Pfister, S. & Hubacek, K. Comparison of bottom-up and top-down approaches to calculating the water footprints of nations. Econ. Syst. Res. 23, 371–385 (2011).

Article 

Google Scholar
 

Lutter, S., Giljum, S. & Bruckner, M. A review and comparative assessment of existing approaches to calculate material footprints. Ecol. Econ. 127, 1–10 (2016).

Article 

Google Scholar
 

Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

Article 
CAS 

Google Scholar
 

Jiang, M. et al. Provincial and sector-level material footprints in China. Proc. Natl Acad. Sci. USA 116, 26484–26490 (2019).

Article 
CAS 

Google Scholar
 

Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 5, 157–166 (2022).

Article 

Google Scholar
 

Hertwich, E. G. Increased carbon footprint of materials production driven by rise in investments. Nat. Geosci. 14, 151–155 (2021).

Article 
CAS 

Google Scholar
 

Matthews, H. S. & Small, M. J. Extending the boundaries of life-cycle assessment through environmental economic input–output models. J. Ind. Ecol. 4, 7–10 (2008).

Article 

Google Scholar
 

Mattila, T. J., Pakarinen, S. & Sokka, L. Quantifying the total environmental impacts of an industrial symbiosis—a comparison of process-, hybrid and input−output life cycle assessment. Environ. Sci. Technol. 44, 4309–4314 (2010).

Article 
CAS 

Google Scholar
 

Lenzen, M. et al. The Global MRIO Lab—charting the world economy. Econ. Syst. Res. 29, 158–186 (2017).

Article 

Google Scholar
 

World Steel in Figures (World Steel Association, 2024); https://worldsteel.org/data/world-steel-in-figures/

Total Production of Paper and Paperboard in the United States from 1961 to 2023. Statista https://www.statista.com/statistics/252708/total-us-production-of-paper-and-board-2001-2010/ (2024).

UN-Water SDG 6 Data Portal. UN https://sdg6data.org/index.php/en (2024).

Lu, Y., Schandl, H., Wang, H. & Zhu, J. China’s pathway towards a net zero and circular economy: a model-based scenario analysis. Resour. Conserv. Recycl. 204, 107514 (2024).

Article 

Google Scholar
 

Pauliuk, S., Carrer, F., Heeren, N. & Hertwich, E. G. Scenario analysis of supply- and demand-side solutions for circular economy and climate change mitigation in the global building sector. J. Ind. Ecol. 28, 1699–1715 (2024).

Article 

Google Scholar
 

Ozcelik, N., Rodríguez, M., Sartal, A. & Lutter, S. Taking away the economic “water productivity” illusion: an indicator inapt to inform meaningful water policies. Ecol. Indic. 165, 112220 (2024).

Article 

Google Scholar
 

Hasanbeigi, A. & Price, L. A technical review of emerging technologies for energy and water efficiency and pollution reduction in the textile industry. J. Clean. Prod. 95, 30–44 (2015).

Article 
CAS 

Google Scholar
 

Hu, J.-L., Wang, S.-C. & Yeh, F.-Y. Total-factor water efficiency of regions in China. Resour. Policy 31, 217–230 (2006).

Article 

Google Scholar
 

SEEA-Water-System of Environmental-Economic Accounting for Water (UN, 2012).

Manual for Physical Water Flow Accounts (Version 2014) (Eurostat, 2014); https://ec.europa.eu/eurostat/documents/1798247/6664269/Manual+for+Physical+Water+Flow+Accounts+%28draft+version+18+Nov+2014%29.pdf

Motoshita, M. et al. Responsibility for sustainable water consumption in the global supply chains. Resour. Conserv. Recycl. 196, 107055 (2023).

Article 

Google Scholar
 

Results of the 2024 Global Assessment of Environmental-Economic Accounting and Supporting Statistics (UN, 2024); https://unstats.un.org/UNSDWebsite/statcom/session_56/documents/BG-3j-UNSC_2025_Results_2024_Global_Assessment-E.pdf

Wang, X. et al. Water-energy-carbon nexus assessment of China’s iron and steel industry: case study from plant level. J. Clean. Prod. 253, 119910 (2020).

Article 

Google Scholar
 

Zuiderveen, E. A. R. et al. The potential of emerging bio-based products to reduce environmental impacts. Nat. Commun. 14, 8521 (2023).

Article 
CAS 

Google Scholar
 

Oyejobi, D. O., Firoozi, A. A., Fernández, D. B. & Avudaiappan, S. Integrating circular economy principles into concrete technology: enhancing sustainability through industrial waste utilization. Results Eng 24, 102846 (2024).

Article 
CAS 

Google Scholar
 

Lutter, S., Sevenster M., Piñero P. & Giljum S. National Hotspots Analysis to Support Science-based National Policy Frameworks for Sustainable Consumption and Production. Technical documentation of the Sustainable Consumption and Production Hotspots Analysis Tool (SCP- HAT) Version 3.0. (UN, 2024); https://scp-hat.org/wp-content/uploads/2024/05/SCP-HAT-3.0_Technical-documentation_May2024.pdf

Cabernard, L. & Pfister, S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci. Total Environ. 755, 142587 (2021).

Article 
CAS 

Google Scholar
 

Duarte, R., Sánchez-Chóliz, J. & Bielsa, J. Water use in the Spanish economy: an input–output approach. Ecol. Econ. 43, 71–85 (2002).

Article 

Google Scholar
 

Hertwich, E. G., Koslowski, M. & Rasul, K. Linking hypothetical extraction, the accumulation of production factors, and the addition of value. J. Ind. Ecol. 28, 736–750 (2024).

Article 

Google Scholar
 

Zhao, C. & Chen, B. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environ. Sci. Technol. 48, 12723–12731 (2014).

Article 
CAS 

Google Scholar
 

Ang, B. W. LMDI decomposition approach: a guide for implementation. Energy Policy 86, 233–238 (2015).

Article 

Google Scholar
 

Stadler, K. et al. EXIOBASE 3: developing a time series of detailed environmentally extended multi-regional input–output tables. J. Ind. Ecol. 22, 502–515 (2018).

Article 

Google Scholar
 

Schulte, S., Jakobs, A. & Pauliuk, S. Estimating the uncertainty of the greenhouse gas emission accounts in global multi-regional input–output analysis. Earth Syst. Sci. Data 16, 2669–2700 (2024).

Article 

Google Scholar
 

Eurostat Manual of Supply, Use and Input-Output Tables (Eurostat, 2008); https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-ra-07-013

Pfister, S., Bayer, P., Koehler, A. & Hellweg, S. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768 (2011).

Article 
CAS 

Google Scholar
 

Pfister, S. & Bayer, P. Monthly water stress: spatially and temporally explicit consumptive water footprint of global crop production. J. Clean. Prod. 73, 52–62 (2014).

Article 

Google Scholar
 

Flörke, M. et al. Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Glob. Environ. Change 23, 144–156 (2013).

Article 

Google Scholar
 

World Development Indicators. World Bank https://databank.worldbank.org/source/world-development-indicators (2024).

Sachs, J. D., Lafortune, G., Fuller, G. & Drumm, E. Sustainable Development Report 2023: Implementing the SDG Stimulus (Dublin Univ. Press, 2023).

World Bank country classifications by income level. World Bank https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025 (2024).