Bertone, G. & Hooper, D. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 27, 2 (2019).

Article 
ADS 

Google Scholar
 

Blumenthal, G. R., Faber, S. M., Primack, J. R. & Rees, M. J. Formation of galaxies and large scale structure with cold dark matter. Nature 311, 517–525 (1984).

Article 
ADS 
CAS 

Google Scholar
 

Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

Article 
ADS 
CAS 

Google Scholar
 

Peebles, P. J. E. Large scale background temperature and mass fluctuations due to scale invariant primeval perturbations. Astrophys. J. Lett. 263, L1–L5 (1982).

Article 
ADS 
CAS 

Google Scholar
 

Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. Supp. Series 208, 19 (2013).

Article 
ADS 

Google Scholar
 

Aghanim, N. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

Article 

Google Scholar
 

Gleyzes, J., Langlois, D., Mancarella, M. & Vernizzi, F. Effective theory of interacting dark energy. J. Cosmol. Astropart. Phys. 08, 054 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 555, 71–74 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Schewtschenko, J. A. et al. Dark matter–radiation interactions: the structure of Milky Way satellite galaxies. Mon. Not. R. Astron. Soc. 461, 2282–2287 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Diacoumis, J. A. D. & Wong, Y. Y. Y. On the prior dependence of cosmological constraints on some dark matter interactions. J. Cosmol. Astropart. Phys. 05, 025 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Diamanti, R., Giusarma, E., Mena, O., Archidiacono, M. & Melchiorri, A. Dark Radiation and interacting scenarios. Phys. Rev. D 87, 063509 (2013).

Article 
ADS 

Google Scholar
 

Buen-Abad, M. A., Marques-Tavares, G. & Schmaltz, M. Non-Abelian dark matter and dark radiation. Phys. Rev. D 92, 023531 (2015).

Article 
ADS 

Google Scholar
 

Pettorino, V., Amendola, L., Baccigalupi, C. & Quercellini, C. Constraints on coupled dark energy using CMB data from WMAP and south pole telescope. Phys. Rev. D 86, 103507 (2012).

Pourtsidou, A., Skordis, C. & Copeland, E. J. Models of dark matter coupled to dark energy. Phys. Rev. D 88, 083505 (2013).

Article 
ADS 

Google Scholar
 

Costa, A. A., Olivari, L. C. & Abdalla, E. Quintessence with Yukawa Interaction. Phys. Rev. D 92, 103501 (2015).

Article 
ADS 

Google Scholar
 

Spergel, D. N. & Steinhardt, P. J. Observational evidence for selfinteracting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Archidiacono, M., Castorina, E., Redigolo, D. & Salvioni, E. Unveiling dark fifth forces with linear cosmology. J. Cosmol. Astropart. Phys. 10, 074 (2022).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Tulin, S. & Yu, H.-B. Dark matter self-interactions and small scale structure. Phys. Rept. 730, 1–57 (2018).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Behnke, E. et al. Final results of the PICASSO dark matter search experiment. Astropart. Phys. 90, 85–92 (2017).

Article 
ADS 

Google Scholar
 

Abdelhameed, A. H. et al. First results from the CRESST-III low-mass dark matter program. Phys. Rev. D 100, 102002 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Agnes, P. et al. Search for low-mass dark matter WIMPs with 12 ton-day exposure of DarkSide-50. Phys. Rev. D 107, 063001 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Aalbers, J. et al. First dark matter search results from the LUX-ZEPLIN (LZ) experiment. Phys. Rev. Lett. 131, 041002 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gaskins, J. M. A review of indirect searches for particle dark matter. Contemp. Phys. 57, 496–525 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Conrad, J. & Reimer, O. Indirect dark matter searches in gamma and cosmic rays. Nature Phys. 13, 224–231 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Rodríguez, A. B. et al. Prospects on searches for baryonic dark matter produced in b-hadron decays at LHCb. Eur. Phys. J. C 81, 964 (2021).

Article 
ADS 

Google Scholar
 

Hayrapetyan, A. et al. Dark sector searches with the CMS experiment. Phys. Rept. 1115, 448 (2025).

Aad, G. et al. The quest to discover supersymmetry at the ATLAS experiment. Phys. Rep. 1116, 261–300 (2025).

Aad, G. et al. Exploration at the high-energy frontier: ATLAS Run 2 searches investigating the exotic jungle beyond the Standard Model. Phys. Rep. 1116, 301–385 (2025).

Ariga, A. et al. FASER’s physics reach for long-lived particles. Phys. Rev. D 99, 095011 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Aaij, R. et al. Search for \({A}^{{\prime} }\to {\mu }^{+}{\mu }^{-}\) decays. Phys. Rev. Lett. 124, 041801 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Aad, G. et al. ATLAS searches for additional scalars and exotic Higgs boson decays with the LHC Run 2 dataset. Phys. Rep. 1116, 184–260 (2025).

Robertson, A. et al. Observable tests of self-interacting dark matter in galaxy clusters: cosmological simulations with SIDM and baryons. Mon. Not. R. Astron. Soc. 488, 3646–3662 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Eckert, D. et al. Constraints on dark matter self-interaction from the internal density profiles of X-COP galaxy clusters. Astron. Astrophys. 666, A41 (2022).

Article 
CAS 

Google Scholar
 

Harvey, D., Chisari, N. E., Robertson, A. & McCarthy, I. G. The impact of self-interacting dark matter on the intrinsic alignments of galaxies. Mon. Not. R. Astron. Soc. 506, 441–451 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Desmond, H. & Ferreira, P. G. Galaxy morphology rules out astrophysically relevant Hu-Sawicki f(R) gravity. Phys. Rev. D 102, 104060 (2020).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Kesden, M. & Kamionkowski, M. Galilean equivalence for galactic dark matter. Phys. Rev. Lett. 97, 131303 (2006).

Article 
ADS 
PubMed 

Google Scholar
 

Kaiser, N. Clustering in real space and in redshift space. Mon. Not. R. Astron. Soc. 227, 1–27 (1987).

Article 
ADS 

Google Scholar
 

Hamilton, A. J. S. Linear Redshift Distortions: A Review, 185–275 (Springer, 1998).

Tutusaus, I., Bonvin, C. & Grimm, N. Measurement of the Weyl potential evolution from the first three years of dark energy survey data. Nat. Commun. 15, 9295 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bonvin, C. & Fleury, P. Testing the equivalence principle on cosmological scales. J. Cosmol. Astropart. Phys. 05, 061 (2018).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Castello, S., Zheng, Z., Bonvin, C. & Amendola, L. Testing the equivalence principle across the Universe: a model-independent approach with galaxy multi-tracing. Phys. Rev. D 111, 12 (2025).

Sobral-Blanco, D. & Bonvin, C. Measuring the distortion of time with relativistic effects in large-scale structure. Mon. Not. R. Astron. Soc. 519, L39–L44 (2022).

Article 
ADS 

Google Scholar
 

Kehagias, A., Noreña, J., Perrier, H. & Riotto, A. Consequences of symmetries and consistency relations in the large-scale structure of the universe for non-local bias and modified gravity. Nucl. Phys. B 883, 83–106 (2014).

Article 
ADS 
MathSciNet 
CAS 
MATH 

Google Scholar
 

Creminelli, P., Gleyzes, J., Hui, L., Simonović, M. & Vernizzi, F. Single-field consistency relations of large scale structure. Part III: test of the equivalence principle. JCAP 06, 009 (2014).

Article 
ADS 

Google Scholar
 

Dark Energy Spectroscopic Instrument. DESI Collaboration. https://www.desi.lbl.gov (2025).

Euclid Survey. Euclid Consortium. https://www.euclid-ec.org (2025).

Square Kilometer Array Observatory. SKAO. https://www.skao.int/en (2025).

Abbott, T. M. C. et al. Dark Energy Survey Year 3 results: cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 105, 023520 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Howlett, C. et al. 2MTF – VI. Measuring the velocity power spectrum. Mon. Not. Roy. Astron. Soc. 471, 3135–3151 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Huterer, D., Shafer, D., Scolnic, D. & Schmidt, F. Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities. JCAP 05, 015 (2017).

Article 
ADS 

Google Scholar
 

Hudson, M. J. & Turnbull, S. J. The growth rate of cosmic structure from peculiar velocities at low and high redshifts. Astrophys. J. Lett. 751, L30 (2013).

Article 
ADS 

Google Scholar
 

Turnbull, S. J. et al. Cosmic flows in the nearby universe from Type Ia Supernovae. Mon. Not. Roy. Astron. Soc. 420, 447–454 (2012).

Article 
ADS 

Google Scholar
 

Davis, M. et al. Local gravity versus local velocity: solutions for β and nonlinear bias. Mon. Not. Roy. Astron. Soc. 413, 2906 (2011).

Article 
ADS 
CAS 

Google Scholar
 

Song, Y.-S. & Percival, W. J. Reconstructing the history of structure formation using Redshift Distortions. JCAP 10, 004 (2009).

Article 
ADS 

Google Scholar
 

Blake, C. et al. Galaxy And Mass Assembly (GAMA): improved cosmic growth measurements using multiple tracers of large-scale structure. Mon. Not. Roy. Astron. Soc. 436, 3089 (2013).

Article 
ADS 

Google Scholar
 

Alam, S. et al. Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Blake, C. et al. The WiggleZ Dark Energy Survey: Joint measurements of the expansion and growth history at z < 1. Mon. Not. Roy. Astron. Soc. 425, 405–414 (2012).

Article 
ADS 

Google Scholar
 

Pezzotta, A. et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS): the growth of structure at 0.5 < z < 1.2 from redshift-space distortions in the clustering of the PDR-2 final sample. Astron. Astrophys. 604, A33 (2017).

Article 

Google Scholar
 

Okumura, T. et al. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ~ 1.4. Publ. Astron. Soc. Jap. 68, 38 (2016).

Article 
ADS 

Google Scholar
 

Zhao, G.-B. et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: a tomographic measurement of cosmic structure growth and expansion rate based on optimal redshift weights. Mon. Not. Roy. Astron. Soc. 482, 3497–3513 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Rubin Observatory. LSST. https://rubinobservatory.org (2025).

Khoury, J. & Weltman, A. Chameleon fields: awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 93, 171104 (2004).

Article 
ADS 
PubMed 

Google Scholar
 

Hinterbichler, K. & Khoury, J. Symmetron fields: screening long-range forces through local symmetry restoration. Phys. Rev. Lett. 104, 231301 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Grimm, N., Bonvin, C. & Tutusaus, I. Testing general relativity through the EG statistic using the weyl potential and galaxy velocities. Phys. Rev. Lett. 133, 211004 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Adame, A. G. et al. DESI 2024 V: full-shape galaxy clustering from Galaxies and Quasars. JCAP 09, 008 (2025).

Akaike, H. A new look at the statistical model identification. IEEE Trans. Automatic Control 19, 716–723 (1974).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Castello, S., Wang, Z., Dam, L., Bonvin, C. & Pogosian, L. Disentangling modified gravity from a dark force with gravitational redshift. Phys. Rev. D 110, 103523 (2024).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Bottaro, S., Castorina, E., Costa, M., Redigolo, D. & Salvioni, E. Unveiling dark forces with the Large Scale Structure of the Universe. Phys. Rev. Lett. 132, 201002 (2024).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Wang, Z., Mirpoorian, S. H., Pogosian, L., Silvestri, A. & Zhao, G.-B. New MGCAMB tests of gravity with CosmoMC and Cobaya. JCAP 08, 038 (2023).

Article 
ADS 
MathSciNet 
MATH 

Google Scholar
 

Chamings, F. N., Avgoustidis, A., Copeland, E. J., Green, A. M. & Pourtsidou, A. Understanding the suppression of structure formation from dark matter-dark energy momentum coupling. Phys. Rev. D 101, 043531 (2020).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Aghamousa, A. et al. The DESI experiment part I: science,targeting, and survey design. Preprint at https://arxiv.org/abs/1611.00036 (2016).

Tutusaus, I., Sobral-Blanco, D. & Bonvin, C. Combining gravitational lensing and gravitational redshift to measure the anisotropic stress with future galaxy surveys. Phys. Rev. D 107, 083526 (2023).

Perenon, L. et al. Multi-tasking the growth of cosmological structures. Phys. Dark Univ. 34, 100898 (2021).

Article 

Google Scholar
 

Amendola, L., Kunz, M. & Sapone, D. Measuring the dark side (with weak lensing). JCAP 0804, 013 (2008).

Article 
ADS 

Google Scholar
 

Daniel, S. F., Caldwell, R. R., Cooray, A. & Melchiorri, A. Large scale structure as a probe of gravitational slip. Phys. Rev. D77, 103513 (2008).

ADS 

Google Scholar
 

Bonvin, C. & Pogosian, L. Modified Einstein versus modified Euler for dark matter. Nature Astron. 7, 1127–1134 (2023).

Article 
ADS 

Google Scholar
 

Archidiacono, M. et al. Constraining dark matter-dark radiation interactions with CMB, BAO, and Lyman-α. J. Cosmol. Astropart. Phys. 10, 055 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Castello, S., Grimm, N. & Bonvin, C. Rescuing constraints on modified gravity using gravitational redshift in large-scale structure. Phys. Rev. D 106, 083511 (2022).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Bertschinger, E. & Zukin, P. Distinguishing modified gravity from dark energy. Phys. Rev. D 78, 024015 (2008).

Article 
ADS 

Google Scholar
 

Pogosian, L., Silvestri, A., Koyama, K. & Zhao, G.-B. How to optimally parametrize deviations from general relativity in the evolution of cosmological perturbations. Phys. Rev. D 81, 104023 (2010).

Article 
ADS 

Google Scholar
 

Adame, A. G. et al. DESI 2024 VII: cosmological constraints from the full-shape modeling of clustering measurements. JCAP 07, 028 (2025).

Sloan Digital Sky Survey. SDSS Collaboration. https://www.sdss.org/ (2025).

WiggleZ Dark Energy Survey. WiggleZ Collaboration. https://wigglez.swin.edu.au/site/forward.html (2025).

Satpathy, S. et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: on the measurement of growth rate using galaxy correlation functions. Mon. Not. R. Astron. Soc. 469, 1369–1382 (2017).

Article 
ADS 
CAS 

Google Scholar
 

Schirra, A. P., Quartin, M. & Amendola, L. A model-independent measurement of the expansion and growth rates from BOSS using the FreePower method. Phys. Dark Universe 49, 102033 (2025).

Blanchard, A. et al. Euclid preparation: VII. Forecast validation for Euclid cosmological probes. Astron. Astrophys. 642, A191 (2020).

Article 
CAS 

Google Scholar
 

Amendola, L., Pietroni, M. & Quartin, M. Fisher matrix for the one-loop galaxy power spectrum: measuring expansion and growth rates without assuming a cosmological model. JCAP 11, 023 (2022).

Article 
ADS 

Google Scholar
 

Asgari, M. et al. KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 645, A104 (2021).

Article 
CAS 

Google Scholar
 

Abbott, T. M. C. et al. Dark energy survey year 1 results: constraints on extended cosmological models from galaxy clustering and weak lensing. Phys. Rev. D 99, 123505 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Abbott, T. M. C. et al. Dark energy survey year 3 results: constraints on extensions to ΛCDM with weak lensing and galaxy clustering. Phys. Rev. D 107, 083504 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Grimm, N. Fifth force from fhat and Jhat. Zenodo, https://doi.org/10.5281/zenodo.17078450 (2025).

Lewis, A., Challinor, A. & Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473–476 (2000).

Article 
ADS 

Google Scholar
Â