Lioubtchenko, D., Tretyakov, S. & Dudorov, S. Millimeter-wave waveguides Vol. 114 (Springer Science & Business Media, 2003).

Carpintero, G., Garcia-Munoz, E., Hartnagel, H., Preu, S. & Raisanen, A. Semiconductor terahertz technology: devices and systems at room temperature operation (John Wiley & Sons, 2015).

Nagatsuma, T., Ducournau, G. & Renaud, C. C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 10, 371–379 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Headland, D., Fujita, M., Carpintero, G., Nagatsuma, T. & Withayachumnankul, W. Terahertz integration platforms using substrateless all-silicon microstructures. APL Photonics 8 (2023).

Smirnov, S. et al. Sub-thz phase shifters enabled by photoconductive single-walled carbon nanotube layers. Adv. Photonics Res. 4, 2200042 (2023).

Article 
CAS 

Google Scholar
 

Chicherin, D., Sterner, M., Lioubtchenko, D., Oberhammer, J. & Räisänen, A. V. Analog-type millimeter-wave phase shifters based on mems tunable high-impedance surface and dielectric rod waveguide. Int. J. Microw. Wirel. Technol. 3, 533–538 (2011).

Article 

Google Scholar
 

Yeh, C. & Shimabukuro, F. I. The essence of dielectric waveguides (Springer, 2008).

Stewart, G. & Culshaw, B. Optical waveguide modelling and design for evanescent field chemical sensors. Optical Quantum Electron. 26, S249–S259 (1994).

Article 
ADS 
CAS 

Google Scholar
 

Huang, W.-P. Coupled-mode theory for optical waveguides: an overview. J. Optical Soc. Am. A 11, 963–983 (1994).

Article 
ADS 

Google Scholar
 

Withayachumnankul, W., Fujita, M. & Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Optical Mater. 6, 1800401 (2018).

Article 

Google Scholar
 

Gao, W. et al. Effective-medium-cladded dielectric waveguides for terahertz waves. Opt. express 27, 38721–38734 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Headland, D., Withayachumnankul, W., Yu, X., Fujita, M. & Nagatsuma, T. Unclad microphotonics for terahertz waveguides and systems. J. Lightwave Technol. 38, 6853–6862 (2020).

ADS 
CAS 

Google Scholar
 

Yang, Y. et al. Terahertz topological photonics for on-chip communication. Nat. Photonics 14, 446–451 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Pousi, P., Lioubtchenko, D., Dudorov, S. & Raisanen, A. V. Dielectric rod waveguide travelling wave amplifier based on algaas/gaas heterostructure, 1082–1085 (2008).

Koala, R. A., Fujita, M. & Nagatsuma, T. Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systems. Nanophotonics 11, 1741–1759 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Rivera-Lavado, A. et al. Planar lens–based ultra-wideband dielectric rod waveguide antenna for tunable thz and sub-thz photomixer sources. J. Infrared, Millim., Terahertz Waves 40, 838–855 (2019).

Article 

Google Scholar
 

Headland, D. & Carpintero, G. Robust unclad terahertz waveguides and integrated components enabled by multimode effects and matched slot couplers. In IEEE Transactions on Terahertz Science and Technology, Vol. 15, 885–893 (2025).

Chen, H. et al. Graphene-based materials toward microwave and terahertz absorbing stealth technologies. Adv. Optical Mater. 7, 1801318 (2019).

Article 

Google Scholar
 

Campion, J. et al. Ultra-wideband integrated graphene-based absorbers for terahertz waveguide systems. Adv. Electron. Mater. 8, 2200106 (2022).

Article 
CAS 

Google Scholar
 

Shui, W. et al. Ti3c2tx mxene sponge composite as broadband terahertz absorber. Adv. optical Mater. 8, 2001120 (2020).

Article 
CAS 

Google Scholar
 

Starchenko, V. V. et al. Electrochemically and optically-switched terahertz electromagnetic interference shielding using mxenes. Phys. Rev. Mater. 9, 074008 (2025).

Article 
CAS 

Google Scholar
 

Xiao, D. et al. Flexible ultra-wideband terahertz absorber based on vertically aligned carbon nanotubes. ACS Appl. Mater. interfaces 11, 43671–43680 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Drozdz, P. A. et al. Highly efficient absorption of thz radiation using waveguide-integrated carbon nanotube/cellulose aerogels. Applied Materials Today 29, (2022).

Generalov, A. et al. Carbon nanotube network varactor. Nanotechnology 26, 045201 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Burdanova, M. G. et al. Ultrafast, high modulation depth terahertz modulators based on carbon nanotube thin films. Carbon 173, 245–252 (2021).

Article 
CAS 

Google Scholar
 

He, X. et al. Carbon nanotube terahertz detector. Nano Lett. 14, 3953–3958 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zubair, A. et al. Carbon nanotube fiber terahertz polarizer. Appl. Phys. Lett. 108, (2016).

Radivon, A. V. et al. Expanding thz vortex generation functionality with advanced spiral zone plates based on single-walled carbon nanotube films. Adv. Optical Mater. 12, 2303282 (2024).

Article 
CAS 

Google Scholar
 

Singh, S. K., Akhtar, M. J. & Kar, K. K. Hierarchical carbon nanotube-coated carbon fiber: ultra lightweight, thin, and highly efficient microwave absorber. ACS Appl. Mater. interfaces 10, 24816–24828 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 106, 6044–6047 (2009).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kivistö, S. et al. Carbon nanotube films for ultrafast broadband technology. Opt. Express 17, 2358–2363 (2009).

Article 
ADS 
PubMed 

Google Scholar
 

Gladush, Y. et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation. Nano Lett. 19, 5836–5843 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Jeong, H. et al. All-fiber mode-locked laser oscillator with pulse energy of 34 nj using a single-walled carbon nanotube saturable absorber. Opt. Express 22, 22667–22672 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Ermolaev, G. A. et al. Express determination of thickness and dielectric function of single-walled carbon nanotube films. Appl. Phys. Lett. 116, 231103 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Romanov, S. A., Alekseeva, A. A., Khabushev, E. M., Krasnikov, D. V. & Nasibulin, A. G. Rapid, efficient, and non-destructive purification of single-walled carbon nanotube films from metallic impurities by joule heating. Carbon 168, 193–200 (2020).

Article 
CAS 

Google Scholar
 

Khabushev, E. M., Krasnikov, D. V., Kolodiazhnaia, J. V., Bubis, A. V. & Nasibulin, A. G. Structure-dependent performance of single-walled carbon nanotube films in transparent and conductive applications. Carbon 161, 712–717 (2020).

Article 
CAS 

Google Scholar
 

Khabushev, E. M. et al. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 10, 6962–6966 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Hong, Y. et al. Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74, 1098–1102 (2003).

Article 
ADS 
CAS 

Google Scholar
 

Nefedova, I. I., Lioubtchenko, D. V., Nefedov, I. S. & Räisänen, A. V. Dielectric constant estimation of a carbon nanotube layer on the dielectric rod waveguide at millimeter wavelengths. IEEE Trans. Microw. Theory Tech. 63, 3265–3271 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Nefedova, I. I., Lioubtchenko, D. V. & Räisänen, A. V.Propagation constant measurements of silver nanowires, carbon nanotubes and graphene at 75–110 ghz, 640-643 (IEEE, 2014).

Nefedova, I. I., Lioubtchenko, D. V., Nefedov, I. S. & Räisänen, A. V. Conductivity of carbon nanotube layers at low-terahertz frequencies. IEEE Trans. Terahertz Sci. Technol. 6, 840–845 (2016).

Article 
ADS 
CAS 

Google Scholar
 

Pozar, D. M.Microwave engineering: theory and techniques (John wiley & sons, 2021).

Krasnikov, D. V. et al. Ethylene-induced welding of single-walled carbon nanotube films to enhance mechanical and optoelectronic properties. Carbon 238, 120230 (2025).

Article 

Google Scholar
 

Novikov, I. V. et al. Aerosol cvd carbon nanotube thin films: From synthesis to advanced applications: A comprehensive review. Adv. Mater., 2413777 https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/adma.202413777 (2025).

Grebenko, A. K. et al. High-quality graphene using boudouard reaction. Adv. Sci. 9, 2200217 (2022).

Article 
CAS 

Google Scholar
 

Khabushev, E. M., Kolodiazhnaia, J. V., Krasnikov, D. V. & Nasibulin, A. G. Activation of catalyst particles for single-walled carbon nanotube synthesis. Chem. Eng. J. 413, 127475 (2021).

Article 
CAS 

Google Scholar
 

Kaskela, A. et al. Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique. Nano Lett. 10, 4349–4355 (2010).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rumiantsev, A. & Ridler, N. Vna calibration. IEEE Microw. Mag. 9, 86–99 (2008).

Article 

Google Scholar
 

Smirnov, S., Xenidis, N., Oberhammer, J. & Lioubtchenko, D. V. Generation of high-order modes in sub-thz dielectric waveguides by misalignment of the transition structure. IEEE, 479–482 (2022).

Huang, Z. et al. Graphene-based composites combining both excellent terahertz shielding and stealth performance. Adv. Optical Mater. 6, 1801165 (2018).

Article 

Google Scholar
 

Xu, S.-T. et al. Active terahertz shielding and absorption based on graphene foam modulated by electric and optical field excitation. Adv. Optical Mater. 7, 1900555 (2019).

Article 

Google Scholar
 

Hong, X. et al. High-permittivity solvents increase mxene stability and stacking order enabling ultraefficient terahertz shielding. Adv. Sci. 11, 2305099 (2024).

Article 
CAS 

Google Scholar
 

Pavlou, C. et al. Effective emi shielding behaviour of thin graphene/pmma nanolaminates in the thz range. Nat. Commun. 12, 4655 (2021).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lin, Z. et al. Highly stable 3d ti3c2t x mxene-based foam architectures toward high-performance terahertz radiation shielding. ACS nano 14, 2109–2117 (2020).

Article 
CAS 
PubMed 

Google Scholar
Â