Erecińska, M. & Silver, I. A. Tissue oxygen tension and brain sensitivity to hypoxia. Respir. Physiol. 128, 263–276 (2001).

Article 
PubMed 

Google Scholar
 

Tuo, Q. Z., Zhang, S. T. & Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 42, 259–305 (2022).

Article 
PubMed 

Google Scholar
 

Radak, D. et al. Apoptosis and acute brain ischemia in ischemic stroke. Curr. Vasc. Pharmacol. 15, 115–122 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568 (1999).

Article 
CAS 
PubMed 

Google Scholar
 

Meyer, D. B. in The Visual System in Vertebrates. Handbook of Sensory Physiology Vol. 7 (ed. Crescitelli, F.) (Springer, 1977).

Walls, G. L. The Vertebrate Eye and its Adaptive Radiation (Cranbrook Institute of Science, 1942).

Mann, I. C. The function of the pecten. Br. J. Ophthalmol. 8, 209 (1924).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brach, V. The functional significance of the avian pecten: a review. Condor 79, 321–327 (1977).

Article 

Google Scholar
 

Borrichius, O. & Coringius, H. Hermetis, Ægyptiorum, et Chemicorum Sapientia (Petri Hauboldi, 1674).

Caprara, C. & Grimm, C. From oxygen to erythropoietin: relevance of hypoxia for retinal development, health and disease. Prog. Retin. Eye Res. 31, 89–119 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Kaur, C., Foulds, W. S. & Ling, E.-A. Hypoxia-ischemia and retinal ganglion cell damage. Clin. Ophthalmol. 2, 879–889 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Park, T. J. et al. Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science 356, 307–311 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Ames, A. III Energy requirements of CNS cells as related to their function and to their vulnerability to ischemia: a commentary based on studies on retina. Can. J. Physiol. Pharmacol. 70, S158–S164 (1992).

Article 
CAS 
PubMed 

Google Scholar
 

Nickla, D. L. & Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 29, 144–168 (2010).

Article 
PubMed 

Google Scholar
 

Country, M. W. Retinal metabolism: a comparative look at energetics in the retina. Brain Res. 1672, 50–57 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Damsgaard, C. & Country, M. W. The opto-respiratory compromise: balancing oxygen supply and light transmittance in the retina. Physiology 37, 101–113 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Franze, K. et al. Muller cells are living optical fibers in the vertebrate retina. Proc. Natl. Acad. Sci. USA 104, 8287–8292 (2007).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chase, J. The evolution of retinal vascularization in mammals: a comparison of vascular and avascular retinae. Ophthalmology 89, 1518–1525 (1982).

Article 
CAS 
PubMed 

Google Scholar
 

Damsgaard, C. et al. Retinal oxygen supply shaped the functional evolution of the vertebrate eye. eLife 8, e52153 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Buttery, R. G., Hinrichsen, C. F. L., Weller, W. L. & Haight, J. R. How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis. Res. 31, 169–187 (1991).

Article 
CAS 
PubMed 

Google Scholar
 

Tommasini, D., Yoshimatsu, T., Puthussery, T., Baden, T. & Shekhar, K. Comparative transcriptomic insights into the evolution of vertebrate photoreceptor types. Curr. Biol. 35, 2228–2239 (2025).

Article 
CAS 
PubMed 

Google Scholar
 

Hurley, J. B. Retina metabolism and metabolism in the pigmented epithelium: a busy intersection. Ann. Rev. Vis. Sci. 7, 665–692 (2021).

Article 

Google Scholar
 

Potier, S., Mitkus, M. & Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 106, 116–126 (2020).

Article 
PubMed 

Google Scholar
 

Dollery, C. T., Bulpitt, C. J. & Kohner, E. M. Oxygen supply to the retina from the retinal and choroidal circulations at normal and increased arterial oxygen tensions. Invest. Ophthalmol. Vis. Sci. 8, 588–594 (1969).

CAS 

Google Scholar
 

Pawlik, G., Rackl, A. & Bing, R. J. Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study. Brain Res. 208, 35–58 (1981).

Article 
CAS 
PubMed 

Google Scholar
 

Isaacs, K. R., Anderson, B. J., Alcantara, A. A., Black, J. E. & Greenough, W. T. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12, 110–119 (1992).

Article 
CAS 
PubMed 

Google Scholar
 

Black, C. P. & Tenney, S. M. Oxygen transport during progressive hypoxia in high-altitude and sea-level waterfowl. Respir. Physiol. 39, 217–239 (1980).

Article 
CAS 
PubMed 

Google Scholar
 

Christensen, N. K., Beedholm, K. & Damsgaard, C. Short communication: maintained visual performance in birds under high altitude hypoxia. Comp. Biochem. Physiol. A 296, 111691 (2024).

Article 
CAS 

Google Scholar
 

Linsenmeier, R. A. & Braun, R. D. Oxygen distribution and consumption in the cat retina during normoxia and hypoxemia. J. Gen. Physiol. 99, 177–197 (1992).

Article 
CAS 
PubMed 

Google Scholar
 

Yu, D.-Y., Cringle, S. J., Alder, V. A., Su, E. & Yu, P. K. Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am. J. Physiol. 270, H965–H973 (1996).

CAS 
PubMed 

Google Scholar
 

Raleigh, J. A. et al. Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res. 58, 3765–3768 (1998).

CAS 
PubMed 

Google Scholar
 

Butler, P. & Taylor, E. Responses of the respiratory and cardiovascular systems of chickens and pigeons to changes in PaO2 and PaCO2. Respir. Physiol. 21, 351–363 (1974).

Article 
CAS 
PubMed 

Google Scholar
 

Shams, H. & Scheid, P. Respiration and blood gases in the duck exposed to normocapnic and hypercapnic hypoxia. Respir. Physiol. 67, 1–12 (1987).

Article 
CAS 
PubMed 

Google Scholar
 

Stahl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78–82 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med. 34, 121–138 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Halestrap, A. P. The SLC16 gene family–structure, role and regulation in health and disease. Mol. Aspects Med. 34, 337–349 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Peynshaert, K., Devoldere, J., Minnaert, A.-K., De Smedt, S. C. & Remaut, K. Morphology and composition of the inner limiting membrane: species-specific variations and relevance toward drug delivery research. Curr. Eye Res. 44, 465–475 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

Mann, I. C. On the development of the fissural and associated regions in the eye of the chick, with some observations on the mammal. J. Anat. 55, 113 (1921).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wingstrand, K. G. & Munk, O. The Pecten Oculi of the Pigeon with Particular Regard to its Function (Kommissionaer: Munksgaard, 1965).

Jasiński, A. Fine structure of capillaries in the pecten oculi of the sparrow, Passer domesticus. Zeitschr. Zellforsch. Mikrosk. Anat. 146, 281–292 (1973).

Article 

Google Scholar
 

Kauth, H. & Sommer, H. The ferment carbonic anhydrase in the animal body. IV. On the function of the pecten in the bird’s eye. Biol. Zbl 72, 196–209 (1953).


Google Scholar
 

Pettigrew, J. D., Wallman, J. & Wildsoet, C. F. Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362–363 (1990).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Davson, H. & Luck, C. A comparative study of the total carbon dioxide in the ocular fluids, cerebrospinal fluid, and plasma of some mammalian species. J. Physiol. 132, 454 (1956).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Brach, V. The effect of intraocular ablation of the pecten oculi of the chicken. Invest. Ophthalmol. Vis. Sci. 14, 166–168 (1975).

CAS 

Google Scholar
 

Akhlagh Moayed, A., Hariri, S., Choh, V. & Bizheva, K. Correlation of visually evoked intrinsic optical signals and electroretinograms recorded from chicken retina with a combined functional optical coherence tomography and electroretinography system. J. Biomed. Opt. 17, 016011 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Greunz, E. M. et al. Elimination of intracardiac shunting provides stable gas anesthesia in tortoises. Sci. Rep. 8, 17124 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Williams, C. J., Malte, C. L., Malte, H., Bertelsen, M. F. & Wang, T. Ectothermy and cardiac shunts profoundly slow the equilibration of inhaled anaesthetics in a multi-compartment model. Sci. Rep. 10, 17157 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kristensen, L. et al. Effect of atropine and propofol on the minimum anaesthetic concentration of isoflurane in the freshwater turtle Trachemys scripta (yellow-bellied slider). Vet. Anaesth. Analg. 50, 180–187 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Yu, D. Y. & Cringle, S. J. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog. Retin. Eye Res. 20, 175–208 (2001).

Article 
CAS 
PubMed 

Google Scholar
 

Damsgaard, C. et al. A novel acidification mechanism for greatly enhanced oxygen supply to the fish retina. eLife 9, e58995 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Busk, M. et al. PET imaging of tumor hypoxia using 18F-labeled pimonidazole. Acta Oncol. 52, 1300–1307 (2013).

Article 
CAS 
PubMed 

Google Scholar
 

Hao, Y. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 42, 293–304 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Dong, M. et al. SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references. Brief. Bioinform. 22, 416–427 (2020).

Article 
PubMed Central 

Google Scholar
 

Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. Gigascience 9, giaa151 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hahn, J. et al. Evolution of neuronal cell classes and types in the vertebrate retina. Nature 624, 415–424 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, J. et al. Comprehensive single-cell atlas of the mouse retina. iScience 27, 109916 (2024).

Wang, J. et al. Molecular characterization of the sea lamprey retina illuminates the evolutionary origin of retinal cell types. Nat. Commun. 15, 10761 (2024).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

Article 
CAS 
PubMed 

Google Scholar
 

Damsgaard, C. et al. Data for ‘Oxygen-free metabolism in the bird inner retina supported by the pecten’. Figshare https://doi.org/10.6084/m9.figshare.30608753.v3 (2025).