Landauer, R. Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961).
Park, S., Kim, Y., Urgaonkar, B., Lee, J. & Seo, E. A comprehensive study of energy efficiency and performance of Flash-based SSD. J. Syst. Archit. 57, 354–365 (2011).
Proesmans, K., Ehrich, J. & Bechhoefer, J. Finite-time Landauer principle. Phys. Rev. Lett. 125, 100602 (2020).
Zhen, Y.-Z., Egloff, D., Modi, K. & Dahlsten, O. Universal bound on energy cost of bit reset in finite time. Phys. Rev. Lett. 127, 190602 (2021).
Blaber, S. & Sivak, D. A. Optimal control in stochastic thermodynamics. J. Phys. Commun. 7, 033001 (2023).
Guéry-Odelin, D., Jarzynski, C., Plata, C. A., Prados, A. & Trizac, E. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. Rep. Prog. Phys. 86, 035902 (2023).
Schmiedl, T. & Seifert, U. Optimal finite-time processes in stochastic thermodynamics. Phys. Rev. Lett. 98, 108301 (2007).
Sivak, D. A. & Crooks, G. E. Thermodynamic metrics and optimal paths. Phys. Rev. Lett. 108, 190602 (2012).
Bennett, C. H. Notes on the history of reversible computation. IBM J. Res. Dev. 32, 16–23 (1988).
Wolpert, D. H. et al. Is stochastic thermodynamics the key to understanding the energy costs of computation? Proc. Natl Acad. Sci. USA 121, e2321112121 (2024).
Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy–speed–accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).
Mori, T. Floquet states in open quantum systems. Annu. Rev. Condens. Matter Phys. 14, 35–56 (2023).
Tietz, C., Schuler, S., Speck, T., Seifert, U. & Wrachtrup, J. Measurement of stochastic entropy production. Phys. Rev. Lett. 97, 050602 (2006).
De Vega, I. & Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 89, 015001 (2017).
Bérut, A. et al. Experimental verification of Landauer’s principle linking information and thermodynamics. Nature 483, 187–189 (2012).
Schuler, S., Speck, T., Tietz, C., Wrachtrup, J. & Seifert, U. Experimental test of the fluctuation theorem for a driven two-level system with time-dependent rates. Phys. Rev. Lett. 94, 180602 (2005).
Skinner, D. J. & Dunkel, J. Estimating entropy production from waiting time distributions. Phys. Rev. Lett. 127, 198101 (2021).
Skinner, D. J. & Dunkel, J. Improved bounds on entropy production in living systems. Proc. Natl Acad. Sci. USA 118, e2024300118 (2021).
Kim, J., Roh, J., Park, M. & Lee, C. Recent advances and challenges of colloidal quantum dot light-emitting diodes for display applications. Adv. Mater. 36, 2212220 (2024).
Kirmani, A. R., Luther, J. M., Abolhasani, M. & Amassian, A. Colloidal quantum dot photovoltaics: current progress and path to gigawatt scale enabled by smart manufacturing. ACS Energy Lett. 5, 3069–3100 (2020).
Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2020).
Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).
Muñoz, R. N. et al. Memory in quantum dot blinking. Phys. Rev. E 106, 014127 (2022).
Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).
Verberk, R., van Oijen, A. M. & Orrit, M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B 66, 233202 (2002).
Shi, J. et al. All-optical fluorescence blinking control in quantum dots with ultrafast mid-infrared pulses. Nat. Nanotechnol. 16, 1355–1361 (2021).
Krasselt, C. & von Borczyskowski, C. Electric field dependent photoluminescence blinking of single hybrid CdSe/CdS-PMMA quantum dots. J. Phys. Chem. C 125, 15384–15395 (2021).
Kullback, S. & Leibler, R. A. On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951).
Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).
Roldán, É., Barral, J., Martin, P., Parrondo, J. M. & Jülicher, F. Quantifying entropy production in active fluctuations of the hair-cell bundle from time irreversibility and uncertainty relations. New J. Phys. 23, 083013 (2021).
Lynn, C. W., Holmes, C. M., Bialek, W. & Schwab, D. J. Decomposing the local arrow of time in interacting systems. Phys. Rev. Lett. 129, 118101 (2022).
Di Terlizzi, I. et al. Variance sum rule for entropy production. Science 383, 971–976 (2024).
Garg, A. & Pati, A. K. Trade-off relations between quantum coherence and measure of many-body localization. Phys. Rev. B 111, 054202 (2025).
Berthier, L. & Kurchan, J. Non-equilibrium glass transitions in driven and active matter. Nat. Phys. 9, 310–314 (2013).
Del Campo, A. & Zurek, W. H. Universality of phase transition dynamics: topological defects from symmetry breaking. Int. J. Mod. Phys. A 29, 1430018 (2014).
Deffner, S. Kibble-Zurek scaling of the irreversible entropy production. Phys. Rev. E 96, 052125 (2017).
Wuttig, M. & Salinga, M. Fast transformers. Nat. Mater. 11, 270–271 (2012).
Mpemba, E. B. & Osborne, D. G. Cool? Phys. Educ. 4, 172–175 (1969).
Lu, Z. & Raz, O. Nonequilibrium thermodynamics of the Markovian Mpemba effect and its inverse. Proc. Natl Acad. Sci. USA 114, 5083–5088 (2017).
Frantsuzov, P., Kuno, M., Janko, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nat. Phys. 4, 519–522 (2008).
Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nat. Mater. 7, 659–664 (2008).
Hu, Z., Liu, S., Qin, H., Zhou, J. & Peng, X. Oxygen stabilizes photoluminescence of CdSe/CdS core/shell quantum dots via deionization. J. Am. Chem. Soc. 142, 4254–4264 (2020).
Esquível, M. L. & Krasii, N. P. Statistics for continuous time Markov chains, a short review. Axioms 14, 283 (2025).
Zucchini, W. & MacDonald, I. L. Hidden Markov Models for Time Series: An Introduction Using R (Chapman and Hall/CRC, 2009).
Yuan, G., Gómez, D. E., Kirkwood, N., Boldt, K. & Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 12, 3397–3405 (2018).
Rabiner, L. R. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 257–286 (2002).
Carter, C. K. & Kohn, R. On Gibbs sampling for state space models. Biometrika 81, 541–553 (1994).
Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040602 (2005).
Schuster, H. G. Nonequilibrium Statistical Physics of Small Systems: Fluctuation Relations and Beyond (Wiley, 2013).
Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. 19, 1227–1230 (1978).
Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012).
Hatano, T. & Sasa, S.-i. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86, 3463 (2001).
Trepagnier, E. et al. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl Acad. Sci. USA 101, 15038–15041 (2004).
Mounier, A. & Naert, A. The Hatano-Sasa equality: transitions between steady states in a granular gas. Europhys. Lett. 100, 30002 (2012).
Vaikuntanathan, S. & Jarzynski, C. Dissipation and lag in irreversible processes. Europhys. Lett. 87, 60005 (2009).
Caprini, L., Löwen, H. & Geilhufe, R. M. Ultrafast entropy production in pump-probe experiments. Nat. Commun. 15, 94 (2024).
Tietjen, F. & Geilhufe, R. M. Ultrafast entropy production in nonequilibrium magnets. PNAS Nexus 4, pgaf055 (2025).
Zhou, J., Zhu, M., Meng, R., Qin, H. & Peng, X. Ideal CdSe/CdS core/shell nanocrystals enabled by entropic ligands and their core size-, shell thickness-, and ligand-dependent photoluminescence properties. J. Am. Chem. Soc. 139, 16556–16567 (2017).
Zürcher, U. What is the frequency of an electron wave? Eur. J. Phys. 37, 045401 (2016).