Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270–275 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).

ADS 

Google Scholar
 

Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543–1546 (1970).

Article 
ADS 
CAS 

Google Scholar
 

Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

Article 
ADS 

Google Scholar
 

Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).

Article 
ADS 
CAS 

Google Scholar
 

Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kim, D. Y. & Chan, M. H. W. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett. 109, 155301 (2012).

Article 
ADS 
PubMed 

Google Scholar
 

Boninsegni, M. & Prokof’ev, N. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005).

Article 
ADS 
PubMed 

Google Scholar
 

Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).

Article 
ADS 
PubMed 

Google Scholar
 

Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).

Article 
ADS 
PubMed 

Google Scholar
 

Melko, R. G. et al. Supersolid order from disorder: hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Li, J.-R. et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates. Nature 543, 91–94 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sengupta, P. & Batista, C. D. Field-induced supersolid phase in spin-one Heisenberg models. Phys. Rev. Lett. 98, 227201 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Sengupta, P. & Batista, C. D. Spin supersolid in an anisotropic spin-one Heisenberg chain. Phys. Rev. Lett. 99, 217205 (2007).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gao, Y. et al. Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet Na2BaCo(PO4)2. npj Quantum Mater. 7, 89 (2022).

Article 
ADS 

Google Scholar
 

Wang, J. et al. Plaquette singlet transition, magnetic barocaloric effect, and spin supersolidity in the Shastry-Sutherland model. Phys. Rev. Lett. 131, 116702 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chen, T. et al. Phase diagram and spectroscopic signatures of supersolids in quantum Ising magnet K2Co(SeO3)2. Preprint at arxiv.org/abs/2402.15869 (2024).

Zhu, M. et al. Continuum excitations in a spin supersolid on a triangular lattice. Phys. Rev. Lett. 133, 186704 (2024).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Gao, Y. et al. Double magnon-roton excitations in the triangular-lattice spin supersolid. Phys. Rev. B 110, 214408 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Sheng, J. et al. Continuum of spin excitations in an ordered magnet. Innovation 6, 100769 (2025).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Popescu, T. I. et al. Zeeman split Kramers doublets in spin-supersolid candidate Na2BaCo(PO4)2. Phys. Rev. Lett. 134, 136703 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Chi, R., Hu, J., Liao, H.-J. & Xiang, T. Dynamical spectra of spin supersolid states in triangular antiferromagnets. Phys. Rev. B 110, L180404 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Gao, Y., Huang, Y., Maekawa, S. & Li, W. Spin Seebeck effect of triangular lattice spin supersolid. Phys. Rev. Lett. 135, 236504 (2025).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Tokiwa, Y. et al. Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures. Commun. Mater. 2, 42 (2021).

Article 
CAS 

Google Scholar
 

Liu, X.-Y. et al. Quantum spin liquid candidate as superior refrigerant in cascade demagnetization cooling. Commun. Phys. 5, 233 (2022).

Article 
CAS 

Google Scholar
 

Wikus, P., Canavan, E., Heine, S. T., Matsumoto, K. & Numazawa, T. Magnetocaloric materials and the optimization of cooling power density. Cryogenics 62, 150–162 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Shirron, P. J. Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators. Cryogenics 62, 130–139 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Wang, Z., Barros, K., Chern, G.-W., Maslov, D. L. & Batista, C. D. Resistivity minimum in highly frustrated itinerant magnets. Phys. Rev. Lett. 117, 206601 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Zhu, L., Garst, M., Rosch, A. & Si, Q. Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91, 066404 (2003).

Article 
ADS 
PubMed 

Google Scholar
 

Garst, M. & Rosch, A. Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points. Phys. Rev. B 72, 205129 (2005).

Article 
ADS 

Google Scholar
 

Van Sciver, S. W. in Helium Cryogenics 2nd edn, Ch. 2, 19–47 (Springer, 2012).

Pobell, F. Matter and Methods at Low Temperatures 3rd edn (Springer, 2007).

Li, N. et al. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2. Nat. Commun. 11, 4216 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tokiwa, Y. et al. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Gruner, T. et al. Metallic local-moment magnetocalorics as a route to cryogenic refrigeration. Commun. Mater. 5, 63 (2024).

Article 
CAS 

Google Scholar
 

Jang, D. et al. Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn. Nat. Commun. 6, 8680 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Shimura, Y. et al. Magnetic refrigeration down to 0.2 K by heavy fermion metal YbCu4Ni. J. Appl. Phys. 131, 013903 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, X. et al. YbNi4Mg: superheavy fermion with enhanced Wilson ratio and magnetocaloric effect. Phys. Rev. Mater. 9, 014402 (2025).

Article 
CAS 

Google Scholar
 

Zhang, X. et al. Sub-kelvin magnetocaloric effect in frustrated intermetallic NdNi4Mg. J. Appl. Phys. 138, 063903 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Watanabe, K., Shimura, Y., Umeo, K., Onimaru, T. & Takabatake, T. Minimization of temperature reached by adiabatic demagnetization refrigeration in Ce-based intermetallic Ce2(Cu1−xNix)2In. Appl. Phys. Lett. 126, 092401 (2025).

Article 
ADS 
CAS 

Google Scholar
 

Wu, L. S. et al. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb. Science 352, 1206–1210 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Li, X. Y. et al. Frustrated spin-1/2 chains in a correlated metal. Nat. Mater. 24, 716–721 (2025).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lee, J., Rabus, A., Lee-Hone, N. R., Broun, D. M. & Mun, E. The two-dimensional metallic triangular lattice antiferromagnet CeCd3P3. Phys. Rev. B 99, 245159 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Cho, A. Helium-3 shortage could put freeze on low-temperature research. Science 326, 778–779 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kramer, D. Helium users are at the mercy of suppliers. Phys. Today 72, 26–29 (2019).

ADS 

Google Scholar
 

Osato, K. et al. Quantum criticality in YbCu4Ni. Phys. Rev. B 109, 024435 (2024).

Article 
ADS 
CAS 

Google Scholar
 

Kaczorowski, D., Rogl, P. & Hiebl, K. Magnetic behavior in a series of cerium ternary intermetallics: Ce2T2In (T = Ni, Cu, Rh, Pd, Pt, and Au). Phys. Rev. B 54, 9891–9902 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Turban, K. & Schäfer, H. Zur kenntnis des BaFe2Al9-strukturtyps: Ternäre aluminide at2Al9 MIT A = Ba, Sr und T = Fe, Co, Ni. J. Less Common Met. 40, 91–96 (1975).

Article 
CAS 

Google Scholar
 

Vajenine, G. V. & Hoffmann, R. Magic electron counts for networks of condensed clusters: vertex-sharing aluminum octahedra. J. Am. Chem. Soc. 120, 4200–4208 (1998).

Article 
ADS 
CAS 

Google Scholar
 

Thiede, V. M. T. & Jeitschko, W. Crystal structure of europium cobalt aluminide (1/2/9), EuCo2Al9. Z. Kristallogr. New Cryst. Struct. 214, 149–150 (1999).

Article 
CAS 

Google Scholar
 

Meier, W. R. et al. A catastrophic charge density wave in BaFe2Al9. Chem. Mater. 33, 2855–2863 (2021).

Article 
CAS 

Google Scholar
 

Xu, L., Shi, X., Jiao, Y., Yang, J. & Wang, Z. SpinToolkit v.1.4.2. GitHub https://github.com/spintoolkit-dev/SpinToolkit_py (2026).

Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

Article 
CAS 

Google Scholar
 

Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).

Wang, Z. & Batista, C. D. Resistivity minimum in diluted metallic magnets. Phys. Rev. B 101, 184432 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Li, H. et al. Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4. Nat. Commun. 11, 1111 (2020).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Hu, Z. et al. Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet. Nat. Commun. 11, 5631 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tokiwa, Y., Radu, T., Geibel, C., Steglich, F. & Gegenwart, P. Divergence of the magnetic Grüneisen ratio at the field-induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 102, 066401 (2009).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhitomirsky, M. E. & Honecker, A. Magnetocaloric effect in one-dimensional antiferromagnets. J. Stat. Mech. 2004, 07012 (2004).

Article 

Google Scholar
 

Honecker, A. & Wessel, S. Magnetocaloric effect in quantum spin-S chains. Condens. Matter Phys. 12, 399–410 (2009).

Article 
ADS 

Google Scholar
 

Wolf, B. et al. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl Acad. Sci. USA 108, 6862–6866 (2011).

Article 
ADS 
CAS 
PubMed Central 

Google Scholar
 

Wolf, B. et al. Magnetic cooling close to a quantum phase transition—the case of Er2Ti2O7. J. Appl. Phys 120, 142112 (2016).

Article 
ADS 

Google Scholar
 

Xiang, J.-S. et al. Criticality-enhanced magnetocaloric effect in quantum spin chain material copper nitrate. Sci. Rep. 7, 44643 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, T. et al. Significant inverse magnetocaloric effect induced by quantum criticality. Phys. Rev. Res. 3, 033094 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Li, H. et al. Magnetocaloric effect of topological excitations in Kitaev magnets. Nat. Commun. 15, 7011 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hagmann, C. & Richards, P. L. Two-stage magnetic refrigerator for astronomical applications with reservoir temperatures above 4 K. Cryogenics 34, 221–226 (1994).

Article 
ADS 
CAS 

Google Scholar