Xiang, J. et al. Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2. Nature 625, 270–275 (2024).
Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107–1113 (1969).
Leggett, A. J. Can a solid be “superfluid”? Phys. Rev. Lett. 25, 1543–1546 (1970).
Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).
Penrose, O. & Onsager, L. Bose-Einstein condensation and liquid helium. Phys. Rev. 104, 576–584 (1956).
Kim, E. & Chan, M. H. W. Probable observation of a supersolid helium phase. Nature 427, 225–227 (2004).
Kim, D. Y. & Chan, M. H. W. Absence of supersolidity in solid helium in porous Vycor glass. Phys. Rev. Lett. 109, 155301 (2012).
Boninsegni, M. & Prokof’ev, N. Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005).
Wessel, S. & Troyer, M. Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005).
Heidarian, D. & Damle, K. Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005).
Melko, R. G. et al. Supersolid order from disorder: hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005).
Li, J.-R. et al. A stripe phase with supersolid properties in spin-orbit-coupled Bose-Einstein condensates. Nature 543, 91–94 (2017).
Léonard, J., Morales, A., Zupancic, P., Esslinger, T. & Donner, T. Supersolid formation in a quantum gas breaking a continuous translational symmetry. Nature 543, 87–90 (2017).
Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).
Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).
Sengupta, P. & Batista, C. D. Field-induced supersolid phase in spin-one Heisenberg models. Phys. Rev. Lett. 98, 227201 (2007).
Sengupta, P. & Batista, C. D. Spin supersolid in an anisotropic spin-one Heisenberg chain. Phys. Rev. Lett. 99, 217205 (2007).
Gao, Y. et al. Spin supersolidity in nearly ideal easy-axis triangular quantum antiferromagnet Na2BaCo(PO4)2. npj Quantum Mater. 7, 89 (2022).
Wang, J. et al. Plaquette singlet transition, magnetic barocaloric effect, and spin supersolidity in the Shastry-Sutherland model. Phys. Rev. Lett. 131, 116702 (2023).
Chen, T. et al. Phase diagram and spectroscopic signatures of supersolids in quantum Ising magnet K2Co(SeO3)2. Preprint at arxiv.org/abs/2402.15869 (2024).
Zhu, M. et al. Continuum excitations in a spin supersolid on a triangular lattice. Phys. Rev. Lett. 133, 186704 (2024).
Gao, Y. et al. Double magnon-roton excitations in the triangular-lattice spin supersolid. Phys. Rev. B 110, 214408 (2024).
Sheng, J. et al. Continuum of spin excitations in an ordered magnet. Innovation 6, 100769 (2025).
Popescu, T. I. et al. Zeeman split Kramers doublets in spin-supersolid candidate Na2BaCo(PO4)2. Phys. Rev. Lett. 134, 136703 (2025).
Chi, R., Hu, J., Liao, H.-J. & Xiang, T. Dynamical spectra of spin supersolid states in triangular antiferromagnets. Phys. Rev. B 110, L180404 (2024).
Gao, Y., Huang, Y., Maekawa, S. & Li, W. Spin Seebeck effect of triangular lattice spin supersolid. Phys. Rev. Lett. 135, 236504 (2025).
Tokiwa, Y. et al. Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures. Commun. Mater. 2, 42 (2021).
Liu, X.-Y. et al. Quantum spin liquid candidate as superior refrigerant in cascade demagnetization cooling. Commun. Phys. 5, 233 (2022).
Wikus, P., Canavan, E., Heine, S. T., Matsumoto, K. & Numazawa, T. Magnetocaloric materials and the optimization of cooling power density. Cryogenics 62, 150–162 (2014).
Shirron, P. J. Applications of the magnetocaloric effect in single-stage, multi-stage and continuous adiabatic demagnetization refrigerators. Cryogenics 62, 130–139 (2014).
Wang, Z., Barros, K., Chern, G.-W., Maslov, D. L. & Batista, C. D. Resistivity minimum in highly frustrated itinerant magnets. Phys. Rev. Lett. 117, 206601 (2016).
Zhu, L., Garst, M., Rosch, A. & Si, Q. Universally diverging Grüneisen parameter and the magnetocaloric effect close to quantum critical points. Phys. Rev. Lett. 91, 066404 (2003).
Garst, M. & Rosch, A. Sign change of the Grüneisen parameter and magnetocaloric effect near quantum critical points. Phys. Rev. B 72, 205129 (2005).
Van Sciver, S. W. in Helium Cryogenics 2nd edn, Ch. 2, 19–47 (Springer, 2012).
Pobell, F. Matter and Methods at Low Temperatures 3rd edn (Springer, 2007).
Li, N. et al. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na2BaCo(PO4)2. Nat. Commun. 11, 4216 (2020).
Tokiwa, Y. et al. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2, e1600835 (2016).
Gruner, T. et al. Metallic local-moment magnetocalorics as a route to cryogenic refrigeration. Commun. Mater. 5, 63 (2024).
Jang, D. et al. Large magnetocaloric effect and adiabatic demagnetization refrigeration with YbPt2Sn. Nat. Commun. 6, 8680 (2015).
Shimura, Y. et al. Magnetic refrigeration down to 0.2 K by heavy fermion metal YbCu4Ni. J. Appl. Phys. 131, 013903 (2022).
Zhang, X. et al. YbNi4Mg: superheavy fermion with enhanced Wilson ratio and magnetocaloric effect. Phys. Rev. Mater. 9, 014402 (2025).
Zhang, X. et al. Sub-kelvin magnetocaloric effect in frustrated intermetallic NdNi4Mg. J. Appl. Phys. 138, 063903 (2025).
Watanabe, K., Shimura, Y., Umeo, K., Onimaru, T. & Takabatake, T. Minimization of temperature reached by adiabatic demagnetization refrigeration in Ce-based intermetallic Ce2(Cu1−xNix)2In. Appl. Phys. Lett. 126, 092401 (2025).
Wu, L. S. et al. Orbital-exchange and fractional quantum number excitations in an f-electron metal, Yb2Pt2Pb. Science 352, 1206–1210 (2016).
Li, X. Y. et al. Frustrated spin-1/2 chains in a correlated metal. Nat. Mater. 24, 716–721 (2025).
Lee, J., Rabus, A., Lee-Hone, N. R., Broun, D. M. & Mun, E. The two-dimensional metallic triangular lattice antiferromagnet CeCd3P3. Phys. Rev. B 99, 245159 (2019).
Cho, A. Helium-3 shortage could put freeze on low-temperature research. Science 326, 778–779 (2009).
Kramer, D. Helium users are at the mercy of suppliers. Phys. Today 72, 26–29 (2019).
Osato, K. et al. Quantum criticality in YbCu4Ni. Phys. Rev. B 109, 024435 (2024).
Kaczorowski, D., Rogl, P. & Hiebl, K. Magnetic behavior in a series of cerium ternary intermetallics: Ce2T2In (T = Ni, Cu, Rh, Pd, Pt, and Au). Phys. Rev. B 54, 9891–9902 (1996).
Turban, K. & Schäfer, H. Zur kenntnis des BaFe2Al9-strukturtyps: Ternäre aluminide at2Al9 MIT A = Ba, Sr und T = Fe, Co, Ni. J. Less Common Met. 40, 91–96 (1975).
Vajenine, G. V. & Hoffmann, R. Magic electron counts for networks of condensed clusters: vertex-sharing aluminum octahedra. J. Am. Chem. Soc. 120, 4200–4208 (1998).
Thiede, V. M. T. & Jeitschko, W. Crystal structure of europium cobalt aluminide (1/2/9), EuCo2Al9. Z. Kristallogr. New Cryst. Struct. 214, 149–150 (1999).
Meier, W. R. et al. A catastrophic charge density wave in BaFe2Al9. Chem. Mater. 33, 2855–2863 (2021).
Xu, L., Shi, X., Jiao, Y., Yang, J. & Wang, Z. SpinToolkit v.1.4.2. GitHub https://github.com/spintoolkit-dev/SpinToolkit_py (2026).
Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).
Pippard, A. B. Magnetoresistance in Metals (Cambridge Univ. Press, 1989).
Wang, Z. & Batista, C. D. Resistivity minimum in diluted metallic magnets. Phys. Rev. B 101, 184432 (2020).
Li, H. et al. Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4. Nat. Commun. 11, 1111 (2020).
Hu, Z. et al. Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet. Nat. Commun. 11, 5631 (2020).
Tokiwa, Y., Radu, T., Geibel, C., Steglich, F. & Gegenwart, P. Divergence of the magnetic Grüneisen ratio at the field-induced quantum critical point in YbRh2Si2. Phys. Rev. Lett. 102, 066401 (2009).
Zhitomirsky, M. E. & Honecker, A. Magnetocaloric effect in one-dimensional antiferromagnets. J. Stat. Mech. 2004, 07012 (2004).
Honecker, A. & Wessel, S. Magnetocaloric effect in quantum spin-S chains. Condens. Matter Phys. 12, 399–410 (2009).
Wolf, B. et al. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point. Proc. Natl Acad. Sci. USA 108, 6862–6866 (2011).
Wolf, B. et al. Magnetic cooling close to a quantum phase transition—the case of Er2Ti2O7. J. Appl. Phys 120, 142112 (2016).
Xiang, J.-S. et al. Criticality-enhanced magnetocaloric effect in quantum spin chain material copper nitrate. Sci. Rep. 7, 44643 (2017).
Liu, T. et al. Significant inverse magnetocaloric effect induced by quantum criticality. Phys. Rev. Res. 3, 033094 (2021).
Li, H. et al. Magnetocaloric effect of topological excitations in Kitaev magnets. Nat. Commun. 15, 7011 (2024).
Hagmann, C. & Richards, P. L. Two-stage magnetic refrigerator for astronomical applications with reservoir temperatures above 4 K. Cryogenics 34, 221–226 (1994).