Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

ADS 

Google Scholar
 

Lecocq, F., Clark, J. B., Simmonds, R. W., Aumentado, J. & Teufel, J. D. Quantum nondemolition measurement of a nonclassical state of a massive object. Phys. Rev. X 5, 041037 (2015).


Google Scholar
 

Shomroni, I., Qiu, L., Malz, D., Nunnenkamp, A. & Kippenberg, T. J. Optical backaction-evading measurement of a mechanical oscillator. Nat. Commun. 10, 2086 (2019).

Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2021).


Google Scholar
 

Andrews, R. W. et al. Bidirectional and efficient conversion between microwave and optical light. Nat. Phys. 10, 321–326 (2014).


Google Scholar
 

Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271 (2014).


Google Scholar
 

Croquette, M. et al. Recent advances toward mesoscopic quantum optomechanics. AVS Quantum Sci. 5, 014403 (2023).

ADS 

Google Scholar
 

DeWitt, C. M. & Rickles, D. (eds) The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference (Edition Open Sources, 2011).

Belenchia, A. et al. Quantum superposition of massive objects and the quantization of gravity. Phys. Rev. D 98, 126009 (2018).

ADS 
MathSciNet 

Google Scholar
 

Guo, J., Norte, R. & Gröblacher, S. Feedback cooling of a room temperature mechanical oscillator close to its motional ground state. Phys. Rev. Lett. 123, 223602 (2019).

ADS 

Google Scholar
 

Tendick, L., Kampermann, H. & Bruß, D. Quantifying necessary quantum resources for nonlocality. Phys. Rev. Res. 4, L012002 (2022).

ADS 

Google Scholar
 

Roda-Llordes, M., Riera-Campeny, A., Candoli, D., Grochowski, P. T. & Romero-Isart, O. Macroscopic quantum superpositions via dynamics in a wide double-well potential. Phys. Rev. Lett. 132, 023601 (2024).

ADS 

Google Scholar
 

Paris, M. G. A., Illuminati, F., Serafini, A. & De Siena, S. Purity of Gaussian states: measurement schemes and time evolution in noisy channels. Phys. Rev. A 68, 012314 (2003).

ADS 

Google Scholar
 

Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).

ADS 

Google Scholar
 

Chu, Y. et al. Quantum acoustics with superconducting qubits. Science 358, 199 (2017).

ADS 
MathSciNet 

Google Scholar
 

Youssefi, A., Kono, S., Chegnizadeh, M. & Kippenberg, T. J. A squeezed mechanical oscillator with millisecond quantum decoherence. Nat. Phys. 19, 1697 (2023).


Google Scholar
 

Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89 (2011).

ADS 

Google Scholar
 

Peterson, R. W. et al. Laser cooling of a micromechanical membrane to the quantum backaction limit. Phys. Rev. Lett. 116, 063601 (2016).

ADS 

Google Scholar
 

Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

ADS 

Google Scholar
 

Tebbenjohanns, F., Mattana, M. L., Rossi, M., Frimmer, M. & Novotny, L. Quantum control of a nanoparticle optically levitated in cryogenic free space. Nature 595, 378 (2021).

ADS 

Google Scholar
 

Qiu, L., Shomroni, I., Seidler, P. & Kippenberg, T. J. Laser cooling of a nanomechanical oscillator to its zero-point energy. Phys. Rev. Lett. 124, 173601 (2020).

ADS 

Google Scholar
 

Gonzalez-Ballestero, C., Aspelmeyer, M., Novotny, L., Quidant, R. & Romero-Isart, O. Levitodynamics: levitation and control of microscopic objects in vacuum. Science 374, 168 (2021).


Google Scholar
 

Magrini, L. et al. Real-time optimal quantum control of mechanical motion at room temperature. Nature 595, 373 (2021).

ADS 

Google Scholar
 

Delić, U. et al. Cooling of a levitated nanoparticle to the motional quantum ground state. Science 367, 892 (2020).

ADS 

Google Scholar
 

MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840 (2020).

ADS 

Google Scholar
 

Engelsen, N. J., Beccari, A. & Kippenberg, T. J. Ultrahigh-quality-factor micro-and nanomechanical resonators using dissipation dilution. Nat. Nanotechnol. 19, 725 (2024).


Google Scholar
 

Huang, G., Beccari, A., Engelsen, N. J. & Kippenberg, T. J. Room-temperature quantum optomechanics using an ultralow noise cavity. Nature 626, 512–516 (2024).

ADS 

Google Scholar
 

Schäfer, J., Rudolph, H., Hornberger, K. & Stickler, B. A. Cooling nanorotors by elliptic coherent scattering. Phys. Rev. Lett. 126, 163603 (2021).

ADS 

Google Scholar
 

Hoang, T. M. et al. Torsional optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).

ADS 

Google Scholar
 

Bang, J. et al. Five-dimensional cooling and nonlinear dynamics of an optically levitated nanodumbbell. Phys. Rev. Res. 2, 043054 (2020).


Google Scholar
 

Stickler, B. A., Hornberger, K. & Kim, M. S. Quantum rotations of nanoparticles. Nat. Rev. Phys. 3, 589 (2021).


Google Scholar
 

Gao, J. et al. Feedback cooling a levitated nanoparticle’s libration to below 100 phonons. Phys. Rev. Res. 6, 033009 (2024).


Google Scholar
 

Parniak, M., Galinskiy, I., Zwettler, T. & Polzik, E. S. High-frequency broadband laser phase noise cancellation using a delay line. Opt. Express 29, 6935 (2021).

ADS 

Google Scholar
 

Pontin, A., Fu, H., Toroš, M., Monteiro, T. S. & Barker, P. F. Simultaneous cavity cooling of all six degrees of freedom of a levitated nanoparticle. Nat. Phys. 19, 1003 (2023).


Google Scholar
 

Kamba, M., Shimizu, R. & Aikawa, K. Nanoscale feedback control of six degrees of freedom of a near-sphere. Nat. Commun. 14, 7943 (2023).

ADS 

Google Scholar
 

Schliesser, A., Rivière, R., Anetsberger, G., Arcizet, O. & Kippenberg, T. J. Resolved-sideband cooling of a micromechanical oscillator. Nat. Phys. 4, 415 (2008).


Google Scholar
 

Rudolph, H., Schäfer, J., Stickler, B. A. & Hornberger, K. Theory of nanoparticle cooling by elliptic coherent scattering. Phys. Rev. A 103, 043514 (2021).

ADS 
MathSciNet 

Google Scholar
 

Meyer, N. et al. Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise. Phys. Rev. Lett. 123, 153601 (2019).

ADS 

Google Scholar
 

Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).

ADS 
MathSciNet 

Google Scholar
 

Piotrowski, J. et al. Simultaneous ground-state cooling of two mechanical modes of a levitated nanoparticle. Nat. Phys. 19, 1009 (2023).


Google Scholar
 

Jayich, A. M. et al. Cryogenic optomechanics with a Si3N4 membrane and classical laser noise. New J. Phys. 14, 115018 (2012).

ADS 

Google Scholar
 

Safavi-Naeini, A. H. et al. Laser noise in cavity-optomechanical cooling and thermometry. New J. Phys. 15, 035007 (2013).

ADS 

Google Scholar
 

Delić, U. et al. Cavity cooling of a levitated nanosphere by coherent scattering. Phys. Rev. Lett. 122, 123602 (2019).

ADS 

Google Scholar
 

van der Laan, F. et al. Sub-Kelvin feedback cooling and heating dynamics of an optically levitated librator. Phys. Rev. Lett. 127, 123605 (2021).

ADS 

Google Scholar
 

Rabl, P., Genes, C., Hammerer, K. & Aspelmeyer, M. Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems. Phys. Rev. A 80, 063819 (2009).

ADS 

Google Scholar
 

Rossi, M. et al. Quantum delocalization of a levitated nanoparticle. Phys. Rev. Lett. https://doi.org/10.1103/2yzc-fsm3 (2025).

Stickler, B. A. et al. Probing macroscopic quantum superpositions with nanorotors. New J. Phys. 20, 122001 (2018).

ADS 
MathSciNet 

Google Scholar
 

Kustura, K. et al. Mechanical squeezing via unstable dynamics in a microcavity. Phys. Rev. Lett. 128, 143601 (2022).

ADS 
MathSciNet 

Google Scholar
 

Ma, Y., Khosla, K. E., Stickler, B. A. & Kim, M. S. Quantum persistent tennis racket dynamics of nanorotors. Phys. Rev. Lett. 125, 053604 (2020).

ADS 
MathSciNet 

Google Scholar
 

Bykov, D. S., Dania, L., Goschin, F. & Northup, T. E. A nanoparticle stored with an atomic ion in a linear Paul trap. Preprint at https://arxiv.org/abs/2403.02034 (2024).

Najera-Santos, B.-L. et al. High-sensitivity ac-charge detection with a MHz-frequency fluxonium qubit. Phys. Rev. X 14, 011007 (2024).


Google Scholar
Â