Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).


Google Scholar
 

Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018).

ADS 

Google Scholar
 

Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon 11, 361–365 (2017).

ADS 

Google Scholar
 

Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

ADS 

Google Scholar
 

Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

ADS 

Google Scholar
 

Menssen, A. J. et al. Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017).

ADS 

Google Scholar
 

Faleo, T. et al. Entanglement-induced collective many-body interference. Sci. Adv. 10, eadp9030 (2024).


Google Scholar
 

Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).

ADS 

Google Scholar
 

Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).

Heindel, T., Kim, J.-H., Gregersen, N., Rastelli, A. & Reitzenstein, S. Quantum dots for photonic quantum information technology. Adv. Opt. Photon 15, 613–738 (2023).


Google Scholar
 

Frick, S., Keil, R., Remesh, V. & Weihs, G. Single-photon sources for multi-photon applications. Photonic Quant. Technol. 1, 53–84 (2023).


Google Scholar
 

Karli, Y. et al. Controlling the photon number coherence of solid-state quantum light sources for quantum cryptography. npj Quantum Inf. 10, 17 (2024).

ADS 

Google Scholar
 

Bracht, T. K. et al. Swing-up of quantum emitter population using detuned pulses. PRX Quantum 2, 40354 (2021).


Google Scholar
 

Karli, Y. et al. Super scheme in action: experimental demonstration of red-detuned excitation of a quantum emitter. Nano Lett. 22, 6567–6572 (2022).

ADS 

Google Scholar
 

Wilbur, G. et al. Notch-filtered adiabatic rapid passage for optically driven quantum light sources. APL Photonics 7, 111302 (2022).

ADS 

Google Scholar
 

Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).

ADS 

Google Scholar
 

Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).

ADS 

Google Scholar
 

Sbresny, F. et al. Stimulated generation of indistinguishable single photons from a quantum ladder system. Phys. Rev. Lett. 128, 093603 (2022).

ADS 

Google Scholar
 

Remesh, V. et al. Compact chirped fiber Bragg gratings for single-photon generation from quantum dots. APL Photonics 8, 101301 (2023).

ADS 

Google Scholar
 

Karli, Y. et al. Robust single-photon generation for quantum information enabled by stimulated adiabatic rapid passage. Appl. Phys. Lett. 125, 254002 (2024).

Ramachandran, A., Fraser-Leach, J., O’Neal, S., Deppe, D. G. & Hall, K. C. Experimental quantification of the robustness of adiabatic rapid passage for quantum state inversion in semiconductor quantum dots. Opt. Express 29, 41766 (2021).

ADS 

Google Scholar
 

Kappe, F. et al. Chirped pulses meet quantum dots: innovations, challenges, and future perspectives. Adv. Quantum Technol. 8, 2300352 (2024).

Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of bell’s inequality without spectral and temporal filtering. Phys. Rev. B. 88, 041306 (2013).

ADS 

Google Scholar
 

Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7, 527–531 (2013).

ADS 

Google Scholar
 

Versteegh, M. A. et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun. 5, 5298 (2014).

ADS 

Google Scholar
 

Seidl, S. et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113 (2006).

Zhang, J. et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).

ADS 

Google Scholar
 

Trotta, R., Martín-Sánchez, J., Daruka, I., Ortix, C. & Rastelli, A. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys. Rev. Lett. 114, 150502 (2015).

ADS 

Google Scholar
 

Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

ADS 

Google Scholar
 

Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).

ADS 

Google Scholar
 

Kowalik, K. et al. Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett. 86, 041907 (2005).

Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).

ADS 

Google Scholar
 

Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).

ADS 

Google Scholar
 

Münzberg, J. et al. Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators. APL Photonics 7, 070802 (2022).

ADS 

Google Scholar
 

Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source. Laser Photonics Rev. 11, 1600297 (2017).

ADS 

Google Scholar
 

Cao, H. et al. Photonic source of heralded Greenberger-Horne-Zeilinger states. Phys. Rev. Lett. 132, 130604 (2024).

ADS 

Google Scholar
 

Chen, S. et al. Heralded three-photon entanglement from a single-photon source on a photonic chip. Phys. Rev. Lett. 132, 130603 (2024).

ADS 

Google Scholar
 

Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).

ADS 

Google Scholar
 

Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).


Google Scholar
 

Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).

ADS 

Google Scholar
 

Hanschke, L. et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf. 4, 43 (2018).

ADS 

Google Scholar
 

Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

ADS 

Google Scholar
 

Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

ADS 

Google Scholar
 

Akimov, I., Andrews, J. & Henneberger, F. Stimulated emission from the biexciton in a single self-assembled ii-vi quantum dot. Phys. Rev. Lett. 96, 067401 (2006).

ADS 

Google Scholar
 

Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).

ADS 

Google Scholar
 

Thomas, S., Malacarne, A., Fresi, F., Poti, L. & Azana, J. Fiber-based programmable picosecond optical pulse shaper. J. Light. Technol. 28, 1832–1843 (2010).

ADS 

Google Scholar
 

Monmayrant, A., Weber, S. & Chatel, B. A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B. 43, 103001 (2010).

ADS 

Google Scholar
 

Kappe, F. et al. Collective excitation of spatio-spectrally distinct quantum dots enabled by chirped pulses. Mater. Quantum Technol. 3, 025006 (2023).

ADS 

Google Scholar
 

Undeutsch, G. et al. Electric-field control of photon indistinguishability in cascaded decays in quantum dots. Nano Lett. 25, 7121–7127 (2025).


Google Scholar
 

Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled in (ga) as/(al) gaAs quantum dots. Phys. Rev. B. 65, 195315 (2002).

ADS 

Google Scholar
 

Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. N. J. Phys. 20, 115003 (2018).


Google Scholar
 

Rickert, L. et al. A fiber-pigtailed quantum dot device generating indistinguishable photons at GHz clock-rates. Nanophotonics 14, 1795 (2025).

Ostapenko, H., Mitchell, T., Castro-Marin, P. & Reid, D. T. Three-element, self-starting kerr-lens-modelocked 1-ghz ti: sapphire oscillator pumped by a single laser diode. Opt. Express 30, 39624–39630 (2022).

ADS 

Google Scholar
 

Yang, J. et al. Titanium: sapphire-on-insulator integrated lasers and amplifiers. Nature 630, 853–859 (2024).


Google Scholar
 

Schlehahn, A. et al. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser. Appl. Phys. Lett. 107, 041105 (2015).

ADS 

Google Scholar
 

Mangold, M. et al. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Opt. Express 22, 6099 (2014).

ADS 

Google Scholar
 

Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).


Google Scholar
 

Northeast, D. B. et al. Optical fibre-based single photon source using InAsP quantum dot nanowires and gradient-index lens collection. Sci. Rep. 11, 22878 (2021).

ADS 

Google Scholar
 

Covre da Silva, S. F. et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources. Appl. Phys. Lett. 119, 120502 (2021).


Google Scholar