Aspuru-Guzik, A. & Walther, P. Photonic quantum simulators. Nat. Phys. 8, 285–291 (2012).
Sparrow, C. et al. Simulating the vibrational quantum dynamics of molecules using photonics. Nature 557, 660–667 (2018).
Wang, H. et al. High-efficiency multiphoton boson sampling. Nat. Photon 11, 361–365 (2017).
Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Menssen, A. J. et al. Distinguishability and many-particle interference. Phys. Rev. Lett. 118, 153603 (2017).
Faleo, T. et al. Entanglement-induced collective many-body interference. Sci. Adv. 10, eadp9030 (2024).
Varnava, M., Browne, D. E. & Rudolph, T. How good must single photon sources and detectors be for efficient linear optical quantum computation? Phys. Rev. Lett. 100, 060502 (2008).
Schweickert, L. et al. On-demand generation of background-free single photons from a solid-state source. Appl. Phys. Lett. 112, 093106 (2018).
Heindel, T., Kim, J.-H., Gregersen, N., Rastelli, A. & Reitzenstein, S. Quantum dots for photonic quantum information technology. Adv. Opt. Photon 15, 613–738 (2023).
Frick, S., Keil, R., Remesh, V. & Weihs, G. Single-photon sources for multi-photon applications. Photonic Quant. Technol. 1, 53–84 (2023).
Karli, Y. et al. Controlling the photon number coherence of solid-state quantum light sources for quantum cryptography. npj Quantum Inf. 10, 17 (2024).
Bracht, T. K. et al. Swing-up of quantum emitter population using detuned pulses. PRX Quantum 2, 40354 (2021).
Karli, Y. et al. Super scheme in action: experimental demonstration of red-detuned excitation of a quantum emitter. Nano Lett. 22, 6567–6572 (2022).
Wilbur, G. et al. Notch-filtered adiabatic rapid passage for optically driven quantum light sources. APL Photonics 7, 111302 (2022).
Thomas, S. E. et al. Bright polarized single-photon source based on a linear dipole. Phys. Rev. Lett. 126, 233601 (2021).
Somaschi, N. et al. Near-optimal single-photon sources in the solid state. Nat. Photon. 10, 340–345 (2016).
Sbresny, F. et al. Stimulated generation of indistinguishable single photons from a quantum ladder system. Phys. Rev. Lett. 128, 093603 (2022).
Remesh, V. et al. Compact chirped fiber Bragg gratings for single-photon generation from quantum dots. APL Photonics 8, 101301 (2023).
Karli, Y. et al. Robust single-photon generation for quantum information enabled by stimulated adiabatic rapid passage. Appl. Phys. Lett. 125, 254002 (2024).
Ramachandran, A., Fraser-Leach, J., O’Neal, S., Deppe, D. G. & Hall, K. C. Experimental quantification of the robustness of adiabatic rapid passage for quantum state inversion in semiconductor quantum dots. Opt. Express 29, 41766 (2021).
Kappe, F. et al. Chirped pulses meet quantum dots: innovations, challenges, and future perspectives. Adv. Quantum Technol. 8, 2300352 (2024).
Kuroda, T. et al. Symmetric quantum dots as efficient sources of highly entangled photons: violation of bell’s inequality without spectral and temporal filtering. Phys. Rev. B. 88, 041306 (2013).
Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. Towards quantum-dot arrays of entangled photon emitters. Nat. Photon. 7, 527–531 (2013).
Versteegh, M. A. et al. Observation of strongly entangled photon pairs from a nanowire quantum dot. Nat. Commun. 5, 5298 (2014).
Seidl, S. et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113 (2006).
Zhang, J. et al. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots. Nat. Commun. 6, 10067 (2015).
Trotta, R., Martín-Sánchez, J., Daruka, I., Ortix, C. & Rastelli, A. Energy-tunable sources of entangled photons: a viable concept for solid-state-based quantum relays. Phys. Rev. Lett. 114, 150502 (2015).
Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).
Muller, A., Fang, W., Lawall, J. & Solomon, G. S. Creating polarization-entangled photon pairs from a semiconductor quantum dot using the optical Stark effect. Phys. Rev. Lett. 103, 217402 (2009).
Kowalik, K. et al. Influence of an in-plane electric field on exciton fine structure in InAs-GaAs self-assembled quantum dots. Appl. Phys. Lett. 86, 041907 (2005).
Zhai, L. et al. Quantum interference of identical photons from remote GaAs quantum dots. Nat. Nanotechnol. 17, 829–833 (2022).
Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017).
Münzberg, J. et al. Fast and efficient demultiplexing of single photons from a quantum dot with resonantly enhanced electro-optic modulators. APL Photonics 7, 070802 (2022).
Lenzini, F. et al. Active demultiplexing of single photons from a solid-state source. Laser Photonics Rev. 11, 1600297 (2017).
Cao, H. et al. Photonic source of heralded Greenberger-Horne-Zeilinger states. Phys. Rev. Lett. 132, 130604 (2024).
Chen, S. et al. Heralded three-photon entanglement from a single-photon source on a photonic chip. Phys. Rev. Lett. 132, 130603 (2024).
Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 1 0 14-dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019).
Sund, P. I. et al. High-speed thin-film lithium niobate quantum processor driven by a solid-state quantum emitter. Sci. Adv. 9, eadg7268 (2023).
Maring, N. et al. A versatile single-photon-based quantum computing platform. Nat. Photon. 18, 603–609 (2024).
Hanschke, L. et al. Quantum dot single-photon sources with ultra-low multi-photon probability. npj Quantum Inf. 4, 43 (2018).
Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).
Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).
Akimov, I., Andrews, J. & Henneberger, F. Stimulated emission from the biexciton in a single self-assembled ii-vi quantum dot. Phys. Rev. Lett. 96, 067401 (2006).
Wei, Y. et al. Tailoring solid-state single-photon sources with stimulated emissions. Nat. Nanotechnol. 17, 470–476 (2022).
Thomas, S., Malacarne, A., Fresi, F., Poti, L. & Azana, J. Fiber-based programmable picosecond optical pulse shaper. J. Light. Technol. 28, 1832–1843 (2010).
Monmayrant, A., Weber, S. & Chatel, B. A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B. 43, 103001 (2010).
Kappe, F. et al. Collective excitation of spatio-spectrally distinct quantum dots enabled by chirped pulses. Mater. Quantum Technol. 3, 025006 (2023).
Undeutsch, G. et al. Electric-field control of photon indistinguishability in cascaded decays in quantum dots. Nano Lett. 25, 7121–7127 (2025).
Bayer, M. et al. Fine structure of neutral and charged excitons in self-assembled in (ga) as/(al) gaAs quantum dots. Phys. Rev. B. 65, 195315 (2002).
Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. N. J. Phys. 20, 115003 (2018).
Rickert, L. et al. A fiber-pigtailed quantum dot device generating indistinguishable photons at GHz clock-rates. Nanophotonics 14, 1795 (2025).
Ostapenko, H., Mitchell, T., Castro-Marin, P. & Reid, D. T. Three-element, self-starting kerr-lens-modelocked 1-ghz ti: sapphire oscillator pumped by a single laser diode. Opt. Express 30, 39624–39630 (2022).
Yang, J. et al. Titanium: sapphire-on-insulator integrated lasers and amplifiers. Nature 630, 853–859 (2024).
Schlehahn, A. et al. Single-photon emission at a rate of 143 MHz from a deterministic quantum-dot microlens triggered by a mode-locked vertical-external-cavity surface-emitting laser. Appl. Phys. Lett. 107, 041105 (2015).
Mangold, M. et al. Pulse repetition rate scaling from 5 to 100 GHz with a high-power semiconductor disk laser. Opt. Express 22, 6099 (2014).
Ding, X. et al. High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing. Nat. Photonics 19, 387–391 (2025).
Northeast, D. B. et al. Optical fibre-based single photon source using InAsP quantum dot nanowires and gradient-index lens collection. Sci. Rep. 11, 22878 (2021).
Covre da Silva, S. F. et al. GaAs quantum dots grown by droplet etching epitaxy as quantum light sources. Appl. Phys. Lett. 119, 120502 (2021).