Hendershott, T. & Moulton, P. C. Automation, speed, and stock market quality: The NYSE’s hybrid. J Financ Markets 14(4), 568–604 (2011).


Google Scholar
 

Hasbrouck, J. & Saar, G. Low-latency trading. J Financ Markets 16(4), 646–679 (2013).


Google Scholar
 

Carrion, A. Very fast money: High-frequency trading on the NASDAQ. J Financ Markets 16(4), 680–711 (2013).


Google Scholar
 

Ramos, H. P. & Perlin, M. S. Does algorithmic trading harm liquidity? Evidence from Brazil. North Am J Econ Finance 54, 101243 (2020).


Google Scholar
 

Boehmer, E., Fong, K. Y. & Wu, J. Algorithmic trading and market quality: International evidence. J Financ Quant Anal 56(8), 2659–2688 (2020).


Google Scholar
 

J. Brogaard, High frequency trading and its impact on market quality, Northwestern University Kellogg School of Management Working Paper (2010).

Hagströmer, B. & Nordén, L. The diversity of high-frequency traders. J Financ Markets 16(4), 741–770 (2013).


Google Scholar
 

F. Zhang, High-frequency trading, stock volatility, and price discovery, SSRN (2010), 1691679.

Kirilenko, A., Kyle, A. S., Samadi, M. & Tuzun, T. The flash crash: High-frequency trading in an electronic market. J. Financ. 72(3), 967–998 (2017).


Google Scholar
 

Hirshleifer, D. Investor psychology and asset pricing. J. Financ. 56(4), 1533–1597 (2001).


Google Scholar
 

Fu, J., Wu, X., Liu, Y. & Chen, R. Firm-specific investor sentiment and stock price crash risk. Financ. Res. Lett. 38, 101442 (2021).


Google Scholar
 

Venezia, I., Nashikkar, A. & Shapira, Z. Firm specific and macro herding by professional and amateur investors and their effects on market volatility. J. Bank. Finance 35(7), 1599–1609 (2011).


Google Scholar
 

Pushpa, N., Silky, V. K., Anand, J. & Ihor, R. Investor sentiment, market volatility, and ESG index dynamics: an empirical analysis. Cogent Economics & Finance 13(1), 13–29 (2025).


Google Scholar
 

Elroi, H. & Haim, K. The impact of retail investor sentiment on the conditional volatility of stocks and bonds: Evidence from the Tel-Aviv stock exchange. Int. Rev. Econ. Financ. 89, 1303–1313 (2024).


Google Scholar
 

Rengga, M. P., Asep, J., Nandang, N. & Wanta, W. Investor sentiment and herding in Islamic stocks: An exploration of the moderating role of market capitalization. J Account Invest 26(2), 787–802 (2025).


Google Scholar
 

Hendershott, T., Jones, C. M. & Menkveld, A. J. Does algorithmic trading improve liquidity?. J. Financ. 66(1), 1–33 (2011).


Google Scholar
 

Faroop, S., Muhammad, I. & Shiraz, K. Herding behavior and its impact on market volatility: Empirical evidence from the Pakistan stock market. Dialogue Soc Sci Rev 2(4), 218–232 (2024).


Google Scholar
 

Servanna, M. F., Christos, A., Vasileios, P., Emmanouil, S. & Thanos, V. Does algorithmic trading induce herding?. Int. J. Financ. Econ. 27, 385–401 (2024).


Google Scholar
 

Menkveld, A. J. The economics of high-frequency trading: Taking stock. Annu. Rev. Financ. Econ. 8, 1–24 (2016).


Google Scholar
 

Hayes, A. F. PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling 1–39 (Guilford Press, Guilford Press, 2012).


Google Scholar
 

Chen, M. G. The rise and latest research progress of algorithmic trading. Secur. Mark. Her. 9, 11–17 (2013).


Google Scholar
 

Xia, Z. B. The new challenge of algorithmic trading to the legal recognition logic of false declaration manipulation. Secur. Mark. Her. 10, 61–70 (2017).


Google Scholar
 

Wang, F. Has algorithmic trading improved the pricing efficiency of China’s stock market?. Southern Finance 522, 49–64 (2022).


Google Scholar
 

Shiller, R. J. From efficient markets theory to behavioral finance. J Econ Perspect 17(1), 83–104 (2003).


Google Scholar
 

Baker, M. & Wurgler, J. Investor sentiment in the stock market. J Econ Perspect 21(2), 129–152 (2007).


Google Scholar
 

Bouteska, A. & Mili, M. The role of investor sentiment and valuation uncertainty in the changes around analyst recommendations: Evidence from US firms. J. Behav. Financ. 1, 1–24 (2021).


Google Scholar
 

Lee, W. Y., Jiang, C. X. & Indro, D. C. Stock market volatility, excess returns, and the role of investor sentiment. J. Bank. Finance 26(12), 2277–2299 (2002).


Google Scholar
 

Glasserman, P. & Mamaysky, H. Does unusual news forecast market stress?. J Financ Quant Anal 54(5), 1937–1974 (2019).


Google Scholar
 

Sprenger, T. O., Tumasjan, A. & Sandner, P. G. Tweets and trades: The information content of stock microblogs. Eur. Financ. Manag. 20(5), 926–957 (2014).


Google Scholar
 

Da, Z., Engelberg, J. & Gao, P. The sum of all FEARS investor sentiment and asset prices. Rev Financ Stud 28(1), 1–32 (2015).


Google Scholar
 

Mehra, R. & Sah, R. Mood fluctuations, projection bias, and volatility of equity prices. J. Econ. Dyn. Control 26(5), 869–887 (2002).

MathSciNet 

Google Scholar
 

Verma, R. & Verma, P. Noise trading and stock market volatility. J. Multinatl. Financ. Manag. 17(3), 231–243 (2007).


Google Scholar
 

Uygur, U. & Tas, O. Modeling the effects of investor sentiment and conditional volatility in international stock markets. J Appl Financ Bank 2(5), 239 (2012).


Google Scholar
 

Yang, C., Gong, X. & Zhang, H. Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect. Resour. Policy 61, 548–563 (2019).


Google Scholar
 

Bikhchandani, S. & Sharma, S. Herd behavior in financial markets. IMF Staff. Pap. 47(3), 279–310 (2000).


Google Scholar
 

Avramov, D., Chordia, T. & Goyal, A. The impact of trades on daily volatility. Rev Financ Stud 19(4), 1241–1277 (2006).


Google Scholar
 

Cai, F., Han, S. & Li, D. Institutional herding and its price impact: Evidence from the corporate bond market. J. Financ. Econ. 131(1), 139–167 (2019).


Google Scholar
 

Szewczyk, S. H. The intra-industry transfer of information inferred from announcements of corporate security offerings. J. Financ. 47(5), 1935–1945 (1992).


Google Scholar
 

Faugère, C. & Shawky, H. A. Volatility and institutional investor holdings in a declining market: A study of Nasdaq during the year 2000. J. Appl. Financ. 2, 32–42 (2003).


Google Scholar
 

Badrinath, S. G., Gay, G. D. & Kale, J. R. Patterns of institutional investment, prudence, and the managerial” safety-net” hypothesis. J Risk Insurance 1, 605–629 (1989).


Google Scholar
 

Choi, N. & Skiba, H. Institutional herding in international markets. J. Bank. Finance 55, 246–259 (2015).


Google Scholar
 

Gokhale, G. M. & Mittal, A. Exploring the nexus of capital market and investor behaviour: A systematic literature review. Int. J. Econ. Financ. Issues 14(2), 65–76 (2024).


Google Scholar
 

Barkha, D., Shallu, B., Vaibhav, A., Mahender, Y. & Pankaj, K. Stock market volatility: A systematic review. J. Model. Manag. 19(3), 57–63 (2024).


Google Scholar
 

Ruipeng, L. & Rangan, G. Investors’ uncertainty and forecasting stock market volatility. J. Behav. Financ. 23(3), 327–337 (2022).


Google Scholar
 

Brogaard, J., Hendershott, T. & Riordan, R. High-frequency trading and price discovery. Rev Financ Stud 27(8), 2267–2306 (2014).


Google Scholar
 

Malceniece, L., Malcenieks, K. & Putniņš, T. J. High frequency trading and comovement in financial markets. J. Financ. Econ. 134(2), 381–399 (2019).


Google Scholar
 

Hendershott, T., Jones, C. M. & Menkveld, A. J. Does algorithmic trading improve liquidity?. J. Financ. 68(1), 137–175 (2011).


Google Scholar
 

Biais, B., Foucault, T. & Moinas, S. Equilibrium fast trading. J. Financ. 70(3), 967–1010 (2015).


Google Scholar
 

Jiang, G. & Zhang, J. High-frequency trading and market quality. Financ. Manage. 46(4), 814–842 (2017).

MathSciNet 

Google Scholar
 

Baker, M. & Wurgler, J. Investor sentiment and the cross-section of stock returns. J. Financ. 61(4), 1645–1680 (2006).


Google Scholar
 

Han, X. & Li, Y. Can investor sentiment be a momentum time-series predictor? Evidence from China. J. Empir. Financ. 42, 212–239 (2017).


Google Scholar
 

Rahman, M. L. & Shamsuddin, A. Investor sentiment and the price-earnings ratio in the G7 stock markets. Pac. Basin Financ. J. 55, 46–62 (2019).


Google Scholar
 

Kumar, A. & Lee, C. M. Retail investor sentiment and return comovements. J. Financ. 61(5), 2451–2486 (2006).


Google Scholar
 

Lakonishok, J., Shleifer, A. & Vishny, R. W. The impact of institutional trading on stock prices. J. Financ. Econ. 32(1), 23–43 (1992).


Google Scholar
 

Ha, Y. & Zhang, H. Algorithmic trading for online portfolio selection under limited market liquidity. Eur. J. Oper. Res. 286(3), 1033–1051 (2020).

MathSciNet 

Google Scholar
 

Chordia, T., Sarkar, A. & Subrahmanyam, A. Liquidity dynamics and cross-autocorrelations. J Financ Quant Anal 1, 709–736 (2011).


Google Scholar
 

Jiang, S. & Jin, X. Effects of investor sentiment on stock return volatility: A spatio-temporal dynamic panel model. Econ. Model. 97, 298–306 (2021).


Google Scholar
 

Graham, J. R. Herding among investment newsletters: Theory and evidence. J. Financ. 54(1), 237–268 (1999).


Google Scholar
 

P. Gomber, B. Arndt, M. Lutat and T. Uhle, High-frequency trading, SSRN (2011), 1858626.

Siyuan, Y., Xiaoxu, L., Tian, C., Shengqi, H. & Rong, X. Algorithmic trading and challenges on retail investors in emerging markets. J Econ, Finance, Account Stud 4(3), 36–41 (2022).


Google Scholar
 

Tao, C. Algorithmic trading and post-earnings-announcement drift: A cross-country study. Int. J. Account. 58(1), 123–132 (2023).


Google Scholar
 

Brogaard, J., Hendershott, T. & Riordan, R. High frequency trading and the 2008 short-sale ban. J. Financ. Econ. 124(1), 22–42 (2017).


Google Scholar