Smart Agriculture Edge Computing Devices Market Size is valued at US$ 2.9 Bn in 2024 and is predicted to reach US$ 16.7 Bn by the year 2034 at an 19.5% CAGR during the forecast period for 2025-2034.
In agricultural settings, including farms, greenhouses, and animal facilities, computation hardware and systems that process data locally—at or close to the source of data generation are referred to as smart agriculture edge computing devices. IoT-enabled tools, sensors, and cameras are integrated into these devices to monitor a variety of metrics, including crop health, livestock behavior, temperature, humidity, and soil moisture. Therefore, in modern agricultural practices, smart agriculture edge devices are essential for precision farming, resource optimization, productivity growth, and the advancement of sustainability. The market for intelligent agriculture is expanding due to the increasing strain on the food supply chain and the rising need for sustainable practices.
Additionally, because loT and Al-based systems provide accurate, data-driven insights, the growing demand for these cutting-edge systems is a significant driver of the widespread adoption of smart agriculture technology. Real-time data collection from loT devices enables farmers to make well-informed decisions based on particular circumstances. The market does, however, confront certain obstacles, such as high startup costs and some farmers’ lack of technological know-how. These obstacles may prevent broad adoption, especially in underdeveloped areas. Nevertheless, if governments and organizations invest in agricultural technology programs, there are many opportunities.Â
Competitive Landscape
Some of the Key Players in Smart Agriculture Edge Computing Devices Market:
John Deere
IBM
Microsoft
Siemens
AGCO
Alphabet (Google)
FarmLogix
Arable Labs
Carbon Robotics
Huawei
Intel
Bosch
NVIDIA
Cisco
Amazon Web Services (AWS)
Trimble
Qualcomm
Dell Technologies
Blue River Technology
CropX
Market Segmentation:
The smart agriculture edge computing devices market is segmented by component, type, deployment mode, application, connectivity, and end-use. By component, the market is segmented into software [data analytics platforms, edge al software, edge device management platforms], hardware [processors, networking devices, power management units, storage devices], and services [consulting services, deployment & integration, support & maintenance]. By type, the market is segmented into edge sensors, edge gateways, edge-integrated drones, edge nodes, edge servers, and edge-enabled cameras. By deployment mode, the market is segmented into cloud-based, on-premise, and hybrid. By application, the market is segmented into crop monitoring, precision farming, livestock monitoring, smart farm equipment management, greenhouse automation, irrigation management, and soil health monitoring. By connectivity, the market is segmented into Wi-Fi, bluetooth, zigbee, cellular (3G, 4G, 5G), and LPWAN (LoRa, NB-loT). By end-use, the market is segmented into agri-tech companies, agricultural cooperatives, large farms, small & medium farms, and research institutions.
By Type, the Edge Gateways Segment is Expected to Drive the Smart Agriculture Edge Computing Devices Market
The edge gateways category led the smart agriculture edge computing devices market in 2024 because they effectively control the data flow between centralized systems and field devices. Real-time analytics and protocol translation are made possible by these devices, which act as the main hubs for communication. Its capacity to preprocess and aggregate data at the edge greatly lowers bandwidth consumption and latency, which is essential for farms with poor connectivity. Both established and new markets are increasingly adopting edge gateways due to the growing need for quicker decision-making in precision agriculture.
Large Farms Segment by End-use is Growing at the Highest Rate in the Smart Agriculture Edge Computing Devices Market
The majority of edge computing usage in the smart agriculture edge computing devices industry is driven by the large farm sector, which requires scalable, automated, and data-driven solutions. To manage large acreages, maximize input use, and monitor workers and equipment in several locations, these farms make investments in edge infrastructure. They can implement cutting-edge AI applications for yield forecasting, illness detection, and autonomous equipment control because of their abundant resource availability. On the other hand, small and medium-sized farms are increasingly using edge devices to increase output while using fewer resources. These farms may gradually incorporate smart technologies owing to flexible and reasonably priced edge solutions.
Regionally, North America Led the Smart Agriculture Edge Computing Devices Market
The significant presence of technologically improved agricultural methods and the broad adoption of precision farming are driving the growth of the smart agriculture edge computing devices market in the North America region. The area gains from widespread internet use, cutting-edge cloud and edge technology, and government programs that support smart farming practices. Furthermore, the presence of important technology companies and agri-tech startups is accelerating the development and commercialization of edge computing systems in the agriculture industry.
In addition, the market for smart agriculture edge computing devices is growing quickly in the Asia Pacific area as a result of growing population-driven food demand and heightened attention to updating agricultural infrastructure. Agri-tech technologies are being invested in by nations like China, India, Japan, and Australia to increase production and resource efficiency. Drones, edge devices, and IoT-enabled sensors are becoming increasingly popular in the area. These tools facilitate localized data processing for pest detection, irrigation management, and crop health monitoring.
Smart Agriculture Edge Computing Devices Market Report Scope
Report Attribute
Specifications
Market Size Value In 2024
USD 2.9 Bn
Revenue Forecast In 2034
USD 16.7 Bn
Growth Rate CAGR
CAGR of 19.5% from 2025 to 2034
Quantitative Units
Representation of revenue in US$ Bn and CAGR from 2025 to 2034
Historic Year
2021 to 2024
Forecast Year
2025-2034
Report Coverage
The forecast of revenue, the position of the company, the competitive market structure, growth prospects, and trends
Segments Covered
By Component, By Type, By Deployment Mode, By Application, By Connectivity, By End-use
Regional Scope
North America; Europe; Asia Pacific; Latin America; Middle East & Africa
Country Scope
U.S.; Canada; Germany; The UK; France; Italy; Spain; Rest of Europe; China; Japan; India; South Korea; Southeast Asia; Rest of Asia Pacific; Brazil; Argentina; Mexico; Rest of Latin America; GCC Countries; South Africa; Rest of the Middle East and Africa
Competitive Landscape
John Deere, IBM, Microsoft, Siemens, AGCO, Alphabet (Google), FarmLogix, Arable Labs, Carbon Robotics, Huawei, Intel, Bosch, NVIDIA, Cisco, Amazon Web Services (AWS), Trimble, Qualcomm, Dell Technologies, Blue River Technology, and CropX
Customization Scope
Free customization report with the procurement of the report, Modifications to the regional and segment scope. Geographic competitive landscape.                     Â
Pricing and Available Payment Methods
Explore pricing alternatives that are customized to your particular study requirements.