Kadohisa, M. Effects of odor on emotion, with implications. Front. Syst. Neurosci. 7, 57047 (2013).

Zucco, G. M., Aiello, L., Turuani, L. & Köster, E. Odor-evoked autobiographical memories: age and gender differences along the life span. Chem. Senses 37, 179–189 (2012).

PubMed 

Google Scholar
 

Robin, O., Alaoui-Ismaïli, O., Dittmar, A. & Vernet-Maury, E. Emotional responses evoked by dental odors: an evaluation from autonomic parameters. J. Dent. Res. 77, 1638–1646 (1998).

CAS 
PubMed 

Google Scholar
 

Sullivan, R. M., Landers, M., Yeaman, B. & Wilson, D. A. Good memories of bad events in infancy. Nature 407, 38–39 (2000).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hummel, T. & Nordin, S. Olfactory disorders and their consequences for quality of life. Acta Otolaryngol. 125, 116–121 (2005).

PubMed 

Google Scholar
 

Whitcroft, K. L. et al. Position paper on olfactory dysfunction: 2023. Rhinology 61, 1–108 (2023).

CAS 
PubMed 

Google Scholar
 

Peters, J. M. et al. Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am. J. Psychiatry 160, 1995–2002 (2003).

PubMed 

Google Scholar
 

Haugen, J. et al. Prevalence of impaired odor identification in Parkinson disease with imaging evidence of nigrostriatal denervation. J. Neural Transm. 123, 421–424 (2016).

CAS 
PubMed 

Google Scholar
 

Ross, G. W. et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann. Neurol. 63, 167–173 (2008).

PubMed 

Google Scholar
 

Oppo, V., Melis, M., Melis, M., Tomassini Barbarossa, I. & Cossu, G. “Smelling and tasting” Parkinson’s disease: using senses to improve the knowledge of the disease. Front. Aging Neurosci. 12, 43 (2020).

Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 15, 11–24 (2019).

CAS 
PubMed 

Google Scholar
 

Rahayel, S., Frasnelli, J. & Joubert, S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behav. Brain Res. 231, 60–74 (2012).

PubMed 

Google Scholar
 

Sorokowski, P. et al. Sex differences in human olfaction: a meta-analysis. Front. Psychol. 10, 426219 (2019).

Stogbauer, J. et al. Prevalence and risk factors of smell dysfunction – a comparison between five German population-based studies. Rhinol. J. 0, 0–0 (2019).


Google Scholar
 

Doty, R. L. & Cameron, E. L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 97, 213–228 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kovacs, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res. Rev. 3, 215–232 (2004).

ADS 
PubMed 

Google Scholar
 

Hayakawa, A. et al. Skeletal and gene-regulatory functions of nuclear sex steroid hormone receptors. J. Bone Miner. Metab. 40, 361–374 (2022).

CAS 
PubMed 

Google Scholar
 

Vrtačnik, P., Ostanek, B., Mencej-Bedrač, S. & Marc, J. The many faces of estrogen signaling. Biochem. Med. 24, 329–342 (2014).


Google Scholar
 

Owen, G. I. & Zelent, A. Origins and evolutionary diversification of the nuclear receptor superfamily. Cell. Mol. Life Sci. 57, 809–827 (2000).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Keller, A. & Vosshall, L. B. Better smelling through genetics: mammalian odor perception. Curr. Opin. Neurobiol. 18, 364–369 (2008).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Manzini, I., Frasnelli, J. & Croy, I. Wie wir riechen und was es für uns bedeutet. HNO 62, 846–852 (2014).

CAS 
PubMed 

Google Scholar
 

Jaeger, S. R., McRae, J. F., Salzman, Y., Williams, L. & Newcomb, R. D. A preliminary investigation into a genetic basis for cis-3-hexen-1-ol odour perception: a genome-wide association approach. Food Qual. Prefer. 21, 121–131 (2010).


Google Scholar
 

McRae, J. F. et al. Identification of regions associated with variation in sensitivity to food-related odors in the human genome. Curr. Biol. 23, 1596–1600 (2013).

CAS 
PubMed 

Google Scholar
 

Gisladottir, R. S. et al. Sequence variants in TAAR5 and other loci affect human odor perception and naming. Curr. Biol. 30, 4643–4653.e3 (2020).

CAS 
PubMed 

Google Scholar
 

Dong, J. et al. Genome-wide association analysis of the sense of smell in U.S. older adults: identification of novel risk loci in African Americans and European Americans. Mol. Neurobiol. 54, 8021–8032 (2017).

CAS 
PubMed 

Google Scholar
 

Kobal, G. et al. Sniffin’ Sticks’: screening of olfactory performance. Rhinology 34, 222–226 (1996).

CAS 
PubMed 

Google Scholar
 

Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLOS Genet. 6, e1000993 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Díaz-Guerra, E., Pignatelli, J., Nieto-Estévez, V. & Vicario-Abejón, C. transcriptional regulation of olfactory bulb neurogenesis. Anat. Rec. 296, 1364–1382 (2013).


Google Scholar
 

Devasani, K. & Yao, Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers 19, 23 (2022).

CAS 

Google Scholar
 

Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).

PubMed 

Google Scholar
 

Fukutani, Y., Koshizawa, T. & Yohda, M. Application of vapor phase stimulation method for screening of human odorant receptors responding to cinnamaldehyde. Sens. Mater. 33, 4203 (2021).

CAS 

Google Scholar
 

Weidinger, D. et al. Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells. Eur. J. Cell Biol. 103, 151408 (2024).

CAS 
PubMed 

Google Scholar
 

Garcia-Esparcia, P. et al. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J. Neuropathol. Exp. Neurol. 72, 524–539 (2013).

CAS 
PubMed 

Google Scholar
 

Cole, J. B., Florez, J. C. & Hirschhorn, J. N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat. Commun. 11, 1467 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Menashe, I. et al. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol. 5, e284 (2007).

PubMed 
PubMed Central 

Google Scholar
 

Pino, J. A. Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int. J. Food Sci. Technol. 48, 564–570 (2013).

CAS 

Google Scholar
 

Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gudmundsson, J. et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat. Commun. 9, 4568 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Akilen, R., Pimlott, Z., Tsiami, A. & Robinson, N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 29, 1192–1196 (2013).

CAS 
PubMed 

Google Scholar
 

Jaeger, S. R. et al. A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr. Biol. 23, 1601–1605 (2013).

CAS 
PubMed 

Google Scholar
 

Li, B. et al. From musk to body odor: decoding olfaction through genetic variation. PLOS Genet. 18, e1009564 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Yoshikawa, K., Deguchi, J., Hu, J., Lu, H.-Y. & Matsunami, H. An odorant receptor that senses four classes of musk compounds. Curr. Biol. 32, 5172–5179.e5 (2022).

CAS 
PubMed 

Google Scholar
 

Sato-Akuhara, N. et al. Genetic variation in the human olfactory receptor OR5AN1 associates with the perception of musks. Chem. Senses 48, bjac037 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Zhou, Y. et al. Comparative phosphoproteomic profiling of type III adenylyl cyclase knockout and control, male, and female mice. Front. Cell. Neurosci. 13, 34 (2019).

Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).

CAS 
PubMed 

Google Scholar
 

Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mori, K. & Shepherd, G. M. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Semin. Cell Biol. 5, 65–74 (1994).

CAS 
PubMed 

Google Scholar
 

Bushdid, C., Magnasco, M. O., Vosshall, L. B. & Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E. & Kobal, G. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).

Kim, H. & Greer, C. A. The emergence of compartmental organization in olfactory bulb glomeruli during postnatal development. J. Comp. Neurol. 422, 297–311 (2000).

CAS 
PubMed 

Google Scholar
 

Hedner, M., Larsson, M., Arnold, N., Zucco, G. M. & Hummel, T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 32, 1062–1067 (2010).

PubMed 

Google Scholar
 

Yahiaoui-Doktor, M. et al. Olfactory function is associated with cognitive performance: results from the population-based LIFE-adult-study. Alzheimers Res. Ther. 11, 43 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Royet, J.-P., Koenig, O., Paugam-Moisy, H., Puzenat, D. & Chasse, J.-L. Levels-of-processing effects on a task of olfactory naming. Percept. Mot. Skills 98, 197–213 (2004).

PubMed 

Google Scholar
 

Wilson, S., Qi, J. & Filipp, F. V. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep. 6, 32611 (2016).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schneider, R. A., Costiloe, J. P., Howard, R. P. & Wolf, S. Olfactory perception thresholds in hypogonadal women: changes accompanying administration of androgen and estrogen. J. Clin. Endocrinol. Metab. 18, 379–390 (1958).

CAS 
PubMed 

Google Scholar
 

Good, P. R., Geary, N. & Engen, T. The effect of estrogen on odor detection. Chem. Senses 2, 45–50 (1976).


Google Scholar
 

Kass, M. D., Czarnecki, L. A., Moberly, A. H. & McGann, J. P. Differences in peripheral sensory input to the olfactory bulb between male and female mice. Sci. Rep. 7, 45851 (2017).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Chen, Y.-C. et al. TOMM40 genetic variants cause neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 24, 4085 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kovács, T., Cairns, N. J. & Lantos, P. L. Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. NeuroReport 12, 285 (2001).

PubMed 

Google Scholar
 

Ayabe-Kanamura, S. et al. Differences in perception of everyday odors: a Japanese-German cross-cultural study. Chem. Senses 23, 31–38 (1998).

CAS 
PubMed 

Google Scholar
 

Chrea, C. et al. Culture and odor categorization: agreement between cultures depends upon the odors. Food Qual. Prefer. 15, 669–679 (2004).


Google Scholar
 

Neumann, C. et al. Validation study of the “Sniffin’ Sticks” olfactory test in a British population: a preliminary communication. Clin. Otolaryngol. 37, 23–27 (2012).

CAS 
PubMed 

Google Scholar
 

Hsieh, J. W., Keller, A., Wong, M., Jiang, R.-S. & Vosshall, L. B. SMELL-S and SMELL-R: olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience. Proc. Natl. Acad. Sci. 114, 11275–11284 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J. Transl. Med. 13, 348 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Engel, C. et al. Cohort profile: the LIFE-adult-study. Int. J. Epidemiol. 52, e66–e79 (2023).

PubMed 

Google Scholar
 

Wright, J. D. et al. The atherosclerosis risk in communities (ARIC) study: JACC focus seminar 3/8. J. Am. Coll. Cardiol. 77, 2939–2959 (2021).

PubMed 
PubMed Central 

Google Scholar
 

Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

McVean, G. A. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).

ADS 
CAS 
PubMed 

Google Scholar
 

Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

ADS 
PubMed 

Google Scholar
 

Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015).

CAS 
PubMed 

Google Scholar
 

Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

PubMed 
PubMed Central 

Google Scholar
 

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).

CAS 
PubMed 

Google Scholar
 

Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

White, J. D. Miamiplot: an R package for creating ggplot2 based miami plots. (2020).

Gordon, M. The Forestplot package. https://github.com/gforge/forestplot (2022).

Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009).

PubMed 

Google Scholar
 

Johnson, T. tobyjohnson/gtx. https://github.com/tobyjohnson/gtx (2023).

Scholz, M. et al. Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat. Commun. 13, 143 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).

CAS 
PubMed 

Google Scholar
 

Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2022).

PubMed Central 

Google Scholar
 

The GTEx Consortium et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

Safran, M. et al. The GeneCards Suite. In Practical Guide to Life Science Databases (eds. Abugessaisa, I. & Kasukawa, T.) 27–56 (Springer Nature, Singapore, 2021). https://doi.org/10.1007/978-981-16-5812-9_2.

Stelzer, G. et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 54, 1.30.1–1.30.33 (2016).


Google Scholar
 

Winkler, T. W. et al. Approaches to detect genetic effects that differ between two strata in genome-wide meta-analyses: recommendations based on a systematic evaluation. PLoS ONE 12, e0181038 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).

MathSciNet 

Google Scholar
 

Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Lloyd-Jones, L. R. et al. The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 100, 228–237 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hatton, A. A. et al. Genetic control of DNA methylation is largely shared across European and East Asian populations. Nat. Commun. 15, 2713 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

CAS 
PubMed 

Google Scholar
 

hmgu-itg/VCF-liftover. Institute of translational genomics. https://github.com/hmgu-itg/VCF-liftover (2016).

Bourdeau, V. et al. Genome-Wide Identification of High-Affinity Estrogen Response Elements in Human and Mouse. Mol. Endocrinol. 18, 1411–1427 (2004).

CAS 
PubMed 

Google Scholar
 

Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. Preprint at https://doi.org/10.1101/2024.03.13.24303864 (2024).

Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xue, A. et al. Unravelling the complex causal effects of substance use behaviours on common diseases. Commun. Med. 4, 1–13 (2024).


Google Scholar
 

Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).

CAS 
PubMed 

Google Scholar
 

Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).

PubMed 
PubMed Central 

Google Scholar
 

Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).

ADS 
MathSciNet 
PubMed 
PubMed Central 

Google Scholar
 

Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).

PubMed 
PubMed Central 

Google Scholar
 

Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30 (2017).

PubMed 

Google Scholar
 

Rees, J. M. B., Wood, A. M., Dudbridge, F. & Burgess, S. Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS ONE 14, e0222362 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017).

MathSciNet 
PubMed 

Google Scholar
 

Förster, F. GenStatLeipzig/GWAMA_olfaction: initial release. Zenodo https://doi.org/10.5281/zenodo.15606619 (2025).