Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

PubMed 

Google Scholar
 

Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS One 9, e107522 (2014).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 2844 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Müller, B. et al. Modelling food security: bridging the gap between the micro and the macro scale. Glob. Environ. Change https://doi.org/10.1016/j.gloenvcha.2020.102085 (2020).

Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

PubMed 

Google Scholar
 

Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

ADS 
CAS 
PubMed 

Google Scholar
 

Semenchuk, P. et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 13, 615 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).


Google Scholar
 

Delzeit, R., Zabel, F., Meyer, C. & Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 17, 1429–1441 (2017).


Google Scholar
 

Pilling, D., Bélanger, J. & Hoffmann, I. Declining biodiversity for food and agriculture needs urgent global action. Nat. Food 1, 144–147 (2020).


Google Scholar
 

Newbold, T. et al. Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg. Top. Life Sci. 3, 207–219 (2019).

PubMed 

Google Scholar
 

Smith, M. R. et al. The lost opportunity from insufficient pollinators for global food supplies and human health. Lancet Planet. Health 6, S3 (2022).


Google Scholar
 

Conference of the Parties to the Convention on Biological Diversity. Agenda Item 9A (United Nations, 2022).

Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).

Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. W. Deciphering the biodiversity–production mutualism in the global food security debate. Trends Ecol. Evol. 35, 1011–1020 (2020).

PubMed 

Google Scholar
 

Ortiz, A. M. D., Outhwaite, C. L., Dalin, C. & Newbold, T. A review of the interactions between biodiversity, agriculture, climate change, and international trade: research and policy priorities. One Earth 4, 88–101 (2021).

ADS 

Google Scholar
 

Tuninetti, M., Ridolfi, L. & Laio, F. Compliance with EAT–Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nat. Food 3, 143–151 (2022).

PubMed 

Google Scholar
 

Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Hayek, M. N., Harwatt, H., Ripple, W. J. & Mueller, N. D. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 4, 21–24 (2021).


Google Scholar
 

Mbow, C. et al. in Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (ed Intergovernmental Panel on Climate Change) 437–550 (Cambridge Univ. Press, 2022).

Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393, 1958–1972 (2019).


Google Scholar
 

Herforth, A. et al. A global review of food-based dietary guidelines. Advances in Nutrition 10, 590–605 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation (World Health Organization, 2003).

Kastner, T. et al. Global agricultural trade and land system sustainability: implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 4, 1425–1443 (2021).

ADS 

Google Scholar
 

Schwarzmueller, F. & Kastner, T. Agricultural trade and its impacts on cropland use and the global loss of species habitat. Sustain. Sci. 17, 2363–2377 (2022).


Google Scholar
 

Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

ADS 
CAS 
PubMed 

Google Scholar
 

Usubiaga-Liaño, A., Mace, G. M. & Ekins, P. Limits to agricultural land for retaining acceptable levels of local biodiversity. Nat. Sustain. 2, 491–498 (2019).


Google Scholar
 

Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA 116, 23202–23208 (2019).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Donald, P. F. Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18, 17–37 (2004).


Google Scholar
 

Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).

ADS 
CAS 
PubMed 

Google Scholar
 

Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Crenna, E., Sinkko, T. & Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 227, 378–391 (2019).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).


Google Scholar
 

Boakes, E. H., Dalin, C., Etard, A. & Newbold, T. Impacts of the global food system on terrestrial biodiversity from land use and climate change. Nat. Commun. 15, 5750 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Schneider, J. M. et al. Effects of profit-driven cropland expansion and conservation policies. Nat. Sustain. 7, 1335–1347 (2024).


Google Scholar
 

Chaudhary, A., Pfister, S. & Hellweg, S. Spatially explicit analysis of biodiversity loss due to global agriculture, pasture and forest land use from a producer and consumer perspective. Environ. Sci. Technol. 50, 3928–3936 (2016).

ADS 
CAS 
PubMed 

Google Scholar
 

Gush, M. et al. Field quantification of the water footprint of an apple orchard, and extrapolation to watershed scale within a winter rainfall Mediterranean climate zone. Agric. For. Meteorol. 271, 135–147 (2019).

ADS 

Google Scholar
 

Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Clark, M. et al. Estimating the environmental impacts of 57,000 food products. Proc. Natl Acad. Sci. USA 119, e2120584119 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Scarborough, P. et al. Vegans, vegetarians, fish-eaters and meat-eaters in the UK show discrepant environmental impacts. Nat. Food 4, 565–574 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Clune, S., Crossin, E. & Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean. Prod. 140, 766–783 (2017).

CAS 

Google Scholar
 

Aleksandrowicz, L., Green, R., Joy, E. J. M., Smith, P. & Haines, A. The impacts of dietary change on greenhouse gas emissions, land use, water use, and health: a systematic review. PLoS One 11, e0165797 (2016).

PubMed 
PubMed Central 

Google Scholar
 

Hallström, E., Carlsson-Kanyama, A. & Börjesson, P. Environmental impact of dietary change: a systematic review. J. Clean. Prod. 91, 1–11 (2015).


Google Scholar
 

Eustachio Colombo, P. et al. Pathways to ‘5-a-day’: modeling the health impacts and environmental footprints of meeting the target for fruit and vegetable intake in the United Kingdom. Am. J. Clin. Nutr. 114, 530–539 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).

PubMed 
PubMed Central 

Google Scholar
 

Molotoks, A., Green, J., Ribeiro, V., Wang, Y. & West, C. Assessing the value of biodiversity-specific footprinting metrics linked to South American soy trade. People Nat. 6, 1742–1757 (2023).


Google Scholar
 

Newbold, T., Boakes, E. H., Hill, S. L. L., Harfoot, M. B. J. & Collen, B. The present and future effects of land use on ecological assemblages in tropical grasslands and savannas in Africa. Oikos 126, 1760–1769 (2017).

ADS 

Google Scholar
 

Phillips, H. R. P., Newbold, T. & Purvis, A. Land-use effects on local biodiversity in tropical forests vary between continents. Biodivers. Conserv. 26, 2251–2270 (2017).

PubMed 
PubMed Central 

Google Scholar
 

Kinnunen, P. et al. Local food crop production can fulfil demand for less than one-third of the population. Nat. Food 1, 229–237 (2020).


Google Scholar
 

Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-01303-0 (2020).

Wyns, A. COP27 establishes loss and damage fund to respond to human cost of climate change. Lancet Planet. Health 7, e21–e22 (2023).

PubMed 

Google Scholar
 

Bateman, I. J. & Mace, G. M. The natural capital framework for sustainably efficient and equitable decision making. Nat. Sustain. 3, 776–783 (2020).


Google Scholar
 

Knößlsdorfer, I., Sellare, J. & Qaim, M. Effects of Fairtrade on farm household food security and living standards: insights from Côte d’Ivoire. Glob. Food Secur. 29, 100535 (2021).


Google Scholar
 

Lenzen, M., Murray, J., Sack, F. & Wiedmann, T. Shared producer and consumer responsibility—theory and practice. Ecol. Econ. 61, 27–42 (2007).


Google Scholar
 

Wurz, A. et al. Win–win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry. Nat. Commun. 13, 4127 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Horak, J. et al. Biodiversity responses to land use in traditional fruit orchards of a rural agricultural landscape. Agric. Ecosyst. Environ. 178, 71–77 (2013).


Google Scholar
 

Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2018.0792 (2018).

Scheelbeek, P. F. D. et al. United Kingdom’s fruit and vegetable supply is increasingly dependent on imports from climate-vulnerable producing countries. Nat. Food 1, 705–712 (2020).

PubMed 
PubMed Central 

Google Scholar
 

Chen, C. et al. University of Notre Dame Global Adaptation Index: Country Index Technical Report 1–46 (University of Notre Dame, 2015).

Lachat, C. et al. Dietary species richness as a measure of food biodiversity and nutritional quality of diets. Proc. Natl Acad. Sci. USA 115, 127–132 (2018).

ADS 
CAS 
PubMed 

Google Scholar
 

Harris, J. et al. Fruit and vegetable biodiversity for nutritionally diverse diets: challenges, opportunities, and knowledge gaps. Glob. Food Sec. 33, 100618 (2022).


Google Scholar
 

Mabhaudhi, T. et al. Diversity and diversification: ecosystem services derived from underutilized crops and their co-benefits for sustainable agricultural landscapes and resilient food systems in Africa. Front. Agron. https://doi.org/10.3389/fagro.2022.859223 (2022).

Leakey, R. R. B. et al. The future of food: domestication and commercialization of indigenous food crops in Africa over the third decade (2012–2021). Sustainability https://doi.org/10.3390/su14042355 (2022).

Mustafa, M. A., Mabhaudhi, T. & Massawe, F. Building a resilient and sustainable food system in a changing world—case for climate-smart and nutrient dense crops. Glob. Food Sec. 28, 100477 (2021).

PubMed 

Google Scholar
 

Li, M. et al. Global food-miles account for nearly 20% of total food-systems emissions. Nat. Food 3, 445–453 (2022).

CAS 
PubMed 

Google Scholar
 

Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Beyond organic farming—harnessing biodiversity-friendly landscapes. Trends Ecol. Evol. 36, 919–930 (2021).

CAS 
PubMed 

Google Scholar
 

Toivonen, M. et al. Effects of crop type and production method on arable biodiversity in boreal farmland. Agric. Ecosyst. Environ. 337, 108061 (2022).


Google Scholar
 

Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. Biol. Sci. 276, 903–909 (2009).

CAS 
PubMed 

Google Scholar
 

Estrada-Carmona, N., Sánchez, A. C., Remans, R. & Jones, S. K. Complex agricultural landscapes host more biodiversity than simple ones: a global meta-analysis. Proc. Natl Acad. Sci. USA 119, e2203385119 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ricciardi, V., Mehrabi, Z., Wittman, H., James, D. & Ramankutty, N. Higher yields and more biodiversity on smaller farms. Nat. Sustain. 4, 651–657 (2021).


Google Scholar
 

Giller, K. E. et al. The future of farming: who will produce our food? Food Sec. 13, 1073–1099 (2021).


Google Scholar
 

Lowder, S. K., Skoet, J. & Raney, T. The number, size, and distribution of farms, smallholder farms, and family farms worldwide. World Development 87, 16–29 (2016).


Google Scholar
 

Global Dietary Database (Tufts University, 1996).

Global Dietary Database (Tufts University, 1995–1999).

Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles https://doi.org/10.1029/2007GB002947 (2008).

Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles https://doi.org/10.1029/2007gb002952 (2008).

International Food Policy Research Institute. Global spatially-disaggregated crop production statistics data for 2010 version 2.0. Harvard Dataverse https://doi.org/10.7910/DVN/PRFF8V (2019).

R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).

Hijmans, R. raster: Geographic data analysis and modeling v. R package version 3.6-23 (2023).

Haytowitz, D. B. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 28. USDA https://doi.org/10.15482/USDA.ADC/1324304 (2015).

Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).


Google Scholar
 

Springmann, M., Kennard, H., Dalin, C. & Freund, F. International food trade contributes to dietary risks and mortality at global, regional and national levels. Nat. Food 4, 886–893 (2023).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Etard, A., Morrill, S. & Newbold, T. Global gaps in trait data for terrestrial vertebrates. Global Ecol. Biogeogr. 29, 2143–2158 (2020).


Google Scholar
 

BirdLife International and NatureServe. Bird species distribution maps of the world. Version 2.0. https://datazone.birdlife.org/ (2012).

The IUCN Red List of Threatened Species. http://www.iucnredlist.org/ (IUCN, 2013).

Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Global Ecol. Biogeogr. 26, 930–941 (2017).


Google Scholar
 

Baston, D. exactextractr: Fast extraction from raster datasets using polygons v. R package version 0.9.1 (2022).

World Bank Official Boundaries (World Bank, 2020).

The World Database of Key Biodiversity Areas. https://www.keybiodiversityareas.org/ (BirdLife International, 2021).

South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).


Google Scholar