Jaeger, H., Noheda, B. & van der Wiel, W. G. Toward a formal theory for computing machines made out of whatever physics offers. Nat. Commun. 14, 4911 (2023).

ADS 

Google Scholar
 

Brunner, D. & Psaltis, D. Competitive photonic neural networks. Nat. Photonics 15, 323–324 (2021).

ADS 

Google Scholar
 

Huang, C. et al. Prospects and applications of photonic neural networks. Adv. Phys. X 7, 1981155 (2022).


Google Scholar
 

Fang, L. et al. Engram-driven videography. Engineering 25, 101–109 (2023).


Google Scholar
 

McMahon, P. L. The physics of optical computing. Nat. Rev. Phys. 5, 717–734 (2023).


Google Scholar
 

Shastri, B. J. et al. Photonics for artificial intelligence and neuromorphic computing. Nat. Photon. 15, 102–114 (2021).

ADS 

Google Scholar
 

Xue, Z. et al. Fully forward mode training for optical neural networks. Nature 632, 280–286 (2024).


Google Scholar
 

Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

ADS 

Google Scholar
 

Meng, X. et al. Compact optical convolution processing unit based on multimode interference. Nat. Commun. 14, 3000 (2023).

ADS 

Google Scholar
 

Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021).

ADS 

Google Scholar
 

Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep neural network for image classification. Nature 606, 501–506 (2022).

ADS 

Google Scholar
 

Fyrillas, A., Faure, O., Maring, N., Senellart, J. & Belabas, N. Scalable machine learning-assisted clear-box characterization for optimally controlled photonic circuits. Optica 11, 427 (2024).

ADS 

Google Scholar
 

Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020).

ADS 

Google Scholar
 

Zhou, H. et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 30 (2022).

ADS 

Google Scholar
 

Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

ADS 
MathSciNet 

Google Scholar
 

Zhou, T. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photon. 15, 367–373 (2021).

ADS 

Google Scholar
 

Ambrogio, S. et al. An analog-AI chip for energy-efficient speech recognition and transcription. Nature 620, 768–775 (2023).

ADS 

Google Scholar
 

Liu, C. et al. A programmable diffractive deep neural network based on a digital-coding metasurface array. Nat. Electron. 5, 113–122 (2022).


Google Scholar
 

Wu, T., Menarini, M., Gao, Z. & Feng, L. Lithography-free reconfigurable integrated photonic processor. Nat. Photonics 17, 710–716 (2023).

ADS 

Google Scholar
 

Zuo, C. & Chen, Q. Exploiting optical degrees of freedom for information multiplexing in diffractive neural networks. Light Sci. Appl. 11, 208 (2022).

ADS 

Google Scholar
 

Zhang, Z. et al. Space–time projection enabled ultrafast all‐optical diffractive neural network. Laser Photon. Rev. 18, 2301367 (2024).

ADS 

Google Scholar
 

Luo, Y. et al. Design of task-specific optical systems using broadband diffractive neural networks. Light Sci. Appl. 8, 112 (2019).

ADS 

Google Scholar
 

Luo, X. et al. Metasurface-enabled on-chip multiplexed diffractive neural networks in the visible. Light Sci. Appl. 11, 158 (2022).

ADS 

Google Scholar
 

Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical information-processing capacity of diffractive surfaces. Light Sci. Appl. 10, 25 (2021).


Google Scholar
 

Hu, J. et al. Diffractive optical computing in free space. Nat. Commun. 15, 1525 (2024).

ADS 

Google Scholar
 

Rahman, M. S. S., Yang, X., Li, J., Bai, B. & Ozcan, A. Universal linear intensity transformations using spatially incoherent diffractive processors. Light Sci. Appl. 12, 195 (2023).

ADS 

Google Scholar
 

Kulce, O., Mengu, D., Rivenson, Y. & Ozcan, A. All-optical synthesis of an arbitrary linear transformation using diffractive surfaces. Light Sci. Appl. 10, 196 (2021).

ADS 

Google Scholar
 

Cheng, Y. et al. Photonic neuromorphic architecture for tens-of-task lifelong learning. Light Sci. Appl. 13, 56 (2024).

ADS 

Google Scholar
 

Xu, Z. et al. Large-scale photonic chiplet Taichi empowers 160-TOPS/W artificial general intelligence. Science 384, 202–209 (2024).

ADS 

Google Scholar
 

Gu, T., Kim, H. J., Rivero-Baleine, C. & Hu, J. Reconfigurable metasurfaces towards commercial success. Nat. Photon. 17, 48–58 (2023).

ADS 

Google Scholar
 

Yao, Y., Wei, Y., Dong, J., Li, M. & Zhang, X. Large-scale reconfigurable integrated circuits for wideband analog photonic computing. Photonics 10, 300 (2023).


Google Scholar
 

Nemati, A., Wang, Q., Hong, M. H. & Teng, J. H. Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron. Adv. 1, 1–25 (2018).


Google Scholar
 

Qu, Y., Lian, H., Ding, C., Liu, H. & Liu, L. High-frame-rate reconfigurable diffractive neural network based on superpixels. Opt. Lett 48, 1–4 (2023).

ADS 

Google Scholar
 

Yang, G. et al. Nonlocal phase-change metaoptics for reconfigurable nonvolatile image processing. Light Sci. Appl. 14, 182 (2025).


Google Scholar
 

Dinsdale, N. J. et al. Deep learning enabled design of complex transmission matrices for universal optical components. ACS Photonics 8, 283–295 (2021).


Google Scholar
 

Li, Q., Sun, Y. & Zhang, X. Single-layer universal optical computing. Phys. Rev. A 109, 053527 (2024).

ADS 

Google Scholar
 

Giamougiannis, G. et al. A coherent photonic crossbar for scalable universal linear optics. J. Light. Technol. 41, 2425–2442 (2023).

ADS 

Google Scholar
 

Yang, Y., Krompass, D. & Tresp, V. Tensor-train recurrent neural networks for video classification. In Proc. 34th International Conference on Machine Learning https://proceedings.mlr.press/v70/yang17e/yang17e.pdf (PMLR, 2017).

Cheng, Y., Li, G., Wong, N., Chen, H. & Yu, H. DEEPEYE: a deeply tensor-compressed neural network for video comprehension on terminal devices. ACM Trans. Embed. Comput. Syst. 19, 1–25 (2020).


Google Scholar
 

Miscuglio, M. & Sorger, V. J. Photonic tensor cores for machine learning. Appl. Phys. Rev. 7, 031404 (2020).

ADS 

Google Scholar
 

Wang, Y. et al. An energy-efficient nonvolatile in-memory computing architecture for extreme learning machine by domain-wall nanowire devices. IEEE Trans. Nanotechnol. 14, 998–1012 (2015).

ADS 

Google Scholar
 

Cheng, Y., Wang, C., Chen, H.-B. & Yu, H. A large-scale in-memory computing for deep neural network with trained quantization. Integration 69, 345–355 (2019).


Google Scholar
 

Krizhevsky, A. et al. Learning multiple layers of features from tiny images. University of Toronto https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (2009).

Deng, J. et al. ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition 248-255 (IEEE, 2009); https://doi.org/10.1109/CVPR.2009.5206848

Oseledets, I. V. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011).

MathSciNet 

Google Scholar
 

Cheng, Y., Yang, Y., Chen, H.-B., Wong, N. & Yu, H. S3-Net: a fast scene understanding network by single-shot segmentation for autonomous driving. ACM Trans. Intell. Syst. Technol. 12, 1–19 (2021).


Google Scholar
 

A, de S.-E. The Little Prince and Letter to a Hostage (Penguin UK, 2021).

Rong, X. word2vec parameter learning explained. Nature 606, 501–506 (2014).


Google Scholar
 

Graves, A., Jaitly, N. & Mohamed, A. Hybrid speech recognition with Deep Bidirectional LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding 273–278 (IEEE, 2013); https://doi.org/10.1109/ASRU.2013.6707742

Gesmundo, A. & Dean, J. An evolutionary approach to dynamic introduction of tasks in large-scale multitask learning systems. Preprint at https://arxiv.org/abs/2205.12755 (2022).

Plath, J., Sinclair, G. & Curnutt, K. The 100 Greatest Literary Characters (Bloomsbury, 2019).

Carroll L. Alice’s Adventures in Wonderland (Broadview Press, 2011).

Baum, L. F. The Wonderful Wizard of Oz (Broadview Press, 2024).

Abdi, H. & Williams, L. J. Principal component analysis. WIREs Comput. Stat. 2, 433–459 (2010).


Google Scholar
 

He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

Wang, B. Dataset for couplets. GitHub https://github.com/wb14123/couplet-dataset (2018).

michaelarman. Poems Dataset (NLP). Kaggle https://www.kaggle.com/datasets/michaelarman/poemsdataset (2020).

Karvelis, P., Gavrilis, D., Georgoulas, G. & Stylios, C. Topic recommendation using Doc2Vec. In 2018 International Joint Conference on Neural Networks (IJCNN) 1–6 (IEEE, 2018); https://doi.org/10.1109/IJCNN.2018.8489513

Chen, D. & Dollan, W. Collecting highly parallel data for paraphrase evaluation. In Proc. 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (eds Lin, D. et al.) 190–200 (Association for Computational Linguistics, 2011).

Abu-El-Haija, S. et al. YouTube-8M: a large-scale video classification benchmark. Preprint at https://arxiv.org/abs/1609.08675 (2016).

Yang, A. et al. Vid2Seq: large-scale pretraining of a visual language model for dense video captioning. Preprint at https://arxiv.org/abs/2302.14115 (2023).

Liang, Y., Zhu, L., Wang, X. & Yang, Y. IcoCap: improving video captioning by compounding images. IEEE Trans. Multimed. 26, 4389–4400 (2024).


Google Scholar
 

Xu, J., Mei, T., Yao, T. & Rui, Y. MSR-VTT: a large video description dataset for bridging video and language. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 5288–5296 (IEEE, 2016); https://doi.org/10.1109/CVPR.2016.571

Schuldt, C., Laptev, I. & Caputo, B. Recognizing human actions: a local SVM approach. In Proc. 17th International Conference on Pattern Recognition, ICPR 2004 https://doi.org/10.1109/ICPR.2004.1334462 (IEEE, 2004).

Srivastava, N., Mansimov, E. & Salakhutdinov, R. Unsupervised learning of video representations using LSTMs. Preprint at https://arxiv.org/abs/1502.04681 (2015).

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998).


Google Scholar
 

Wang, C. et al. Diffractive tensorized unit for million-TOPS general-purpose computing. Dryad https://doi.org/10.5061/dryad.7d7wm387c (2025).