Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

Article 
MATH 
ADS 

Google Scholar
 

Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012 (2020).

Article 

Google Scholar
 

Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

Article 
ADS 

Google Scholar
 

Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).

Article 
ADS 

Google Scholar
 

Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).

Article 

Google Scholar
 

Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).

Article 
ADS 

Google Scholar
 

Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

Article 
ADS 

Google Scholar
 

Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).

Article 
MathSciNet 
ADS 

Google Scholar
 

Fitzsimons, J. F. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Inf. 3, 23 (2017).

Article 
ADS 

Google Scholar
 

Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).

Article 
ADS 

Google Scholar
 

Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

Article 
ADS 

Google Scholar
 

Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).

Article 
ADS 

Google Scholar
 

Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

Article 
ADS 

Google Scholar
 

van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).

Article 
ADS 

Google Scholar
 

Krutyanskiy, V. et al. Telecom-wavelength quantum repeater node based on a trapped-ion processor. Phys. Rev. Lett. 130, 213601 (2023).

Article 
ADS 

Google Scholar
 

Uysal, M. T. et al. Spin-photon entanglement of a single Er3+ ion in the telecom band. Phys. Rev. X. 15, 011071 (2025).


Google Scholar
 

Covey, J. P., Weinfurter, H. & Bernien, H. Quantum networks with neutral atom processing nodes. npj Quantum Inf. 9, 90 (2023).

Article 
ADS 

Google Scholar
 

Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

Article 
ADS 

Google Scholar
 

Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

Article 
ADS 

Google Scholar
 

Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

Article 
ADS 

Google Scholar
 

Ruskuc, A. et al. Multiplexed entanglement of multi-emitter quantum network nodes. Nature 639, 54–59 (2025).

Article 

Google Scholar
 

Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers. PRX Quantum 3, 020359 (2022).

Article 
ADS 

Google Scholar
 

Bersin, E. et al. Telecom networking with a diamond quantum memory. PRX Quantum 5, 010303 (2024).

Article 
ADS 

Google Scholar
 

Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

Article 
MathSciNet 
ADS 

Google Scholar
 

Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

Article 
ADS 

Google Scholar
 

Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

Article 
ADS 

Google Scholar
 

Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).

Article 

Google Scholar
 

Huie, W., Menon, S. G., Bernien, H. & Covey, J. P. Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Phys. Rev. Res. 3, 043154 (2021).

Article 

Google Scholar
 

Li, Y. & Thompson, J. D. High-rate and high-fidelity modular interconnects between neutral atom quantum processors. PRX Quantum 5, 020363 (2024).

Article 

Google Scholar
 

Canteri, M. et al. A photon-interfaced ten qubit quantum network node. Phys. Rev. Lett. 135, 080801 (2025).

Article 

Google Scholar
 

Hartung, L., Seubert, M., Welte, S., Distante, E. & Rempe, G. A quantum-network register assembled with optical tweezers in an optical cavity. Science 385, 179–183 (2024).

Article 
MathSciNet 

Google Scholar
 

Trupke, M. et al. Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007).

Article 
ADS 

Google Scholar
 

Derntl, C. et al. Arrays of open, independently tunable microcavities. Opt. Express 22, 22111–22120 (2014).

Article 
ADS 

Google Scholar
 

Menon, S. G., Glachman, N., Pompili, M., Dibos, A. & Bernien, H. An integrated atom array-nanophotonic chip platform with background-free imaging. Nat. Commun. 15, 6156 (2024).

Article 

Google Scholar
 

Shadmany, D. et al. Cavity QED in a high NA resonator. Sci. Adv. 11, eads8171 (2025).

Article 

Google Scholar
 

Sunami, S., Tamiya, S., Inoue, R., Yamasaki, H. & Goban, A. Scalable networking of neutral-atom qubits: nanofiber-based approach for multiprocessor fault-tolerant quantum computer. PRX Quantum 6, 010101 (2025).

Article 

Google Scholar
 

Huie, W. et al. Repetitive readout and real-time control of nuclear spin qubits in 171Yb atoms. PRX Quantum 4, 030337 (2023).

Article 
ADS 

Google Scholar
 

Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).


Google Scholar
 

Morigi, G., Eschner, J. & Keitel, C. H. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458–4461 (2000).

Article 
ADS 

Google Scholar
 

Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).


Google Scholar
 

Barnes, K. et al. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022).

Article 
ADS 

Google Scholar
 

Chen, N. et al. Analyzing the Rydberg-based optical-metastable-ground architecture for 171Yb nuclear spins. Phys. Rev. A 105, 052438 (2022).

Article 
ADS 

Google Scholar
 

Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).

Article 
ADS 

Google Scholar
 

Peper, M. et al. Spectroscopy and modeling of 171Yb Rydberg states for high-fidelity two-qubit gates. Phys. Rev. X 15, 011009 (2025).


Google Scholar
 

Muniz, J. A. et al. High-fidelity universal gates in the 171Yb ground state nuclear spin qubit. PRX Quantum 6, 020334 (2025).

Article 

Google Scholar
 

Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).

Article 

Google Scholar
 

Li, L., Huie, W., Chen, N., DeMarco, B. & Covey, J. P. Active cancellation of servo-induced noise on stabilized lasers via feedforward. Phys. Rev. Appl. 18, 064005 (2022).

Article 
ADS 

Google Scholar
 

Saha, S. et al. High-fidelity remote entanglement of trapped atoms mediated by time-bin photons. Nat. Commun. 16, 2533 (2025).

Article 

Google Scholar
 

Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

Article 
MathSciNet 

Google Scholar
 

Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).

Article 

Google Scholar
 

Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27, 35279–35289 (2019).

Article 
ADS 

Google Scholar
 

Oripov, B. G. et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622, 730–734 (2023).

Article 
ADS 

Google Scholar
 

Fleming, F. et al. High-efficiency, high-count-rate 2D superconducting nanowire single-photon detector array. Opt. Express 33, 27602–27614 (2025).

Article 

Google Scholar
 

Shaw, A. L. et al. Erasure cooling, control, and hyperentanglement of motion in optical tweezers. Science 388, 845–849 (2025).

Article 
MathSciNet 

Google Scholar
 

Graham, T. M. et al. Mid-circuit measurements on a neutral atom quantum processor. Phys. Rev. X 13, 041051 (2023).


Google Scholar
 

Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265–1269 (2023).

Article 
ADS 

Google Scholar
 

Nakamura, Y. et al. A hybrid atom tweezer array of nuclear spin and optical clock qubits. Phys. Rev. X 14, 041062 (2024).


Google Scholar
 

Norcia, M. A. et al. Midcircuit qubit measurement and rearrangement in a 171Yb atomic array. Phys. Rev. X 13, 041034 (2023).


Google Scholar
 

Hu, B. et al. Site-selective cavity readout and classical error correction of a 5-bit atomic register. Phys. Rev. Lett. 134, 120801 (2025).

Article 

Google Scholar
 

Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).

Article 
ADS 

Google Scholar
 

Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).

Tang, Z.-M., Yu, Y.-M. & Dong, C.-Z. Determination of static dipole polarizabilities of Yb atom. Chinese Phys. B 27, 063101 (2018).

Article 
ADS 

Google Scholar
 

Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).

Article 
ADS 

Google Scholar
 

Norcia, M. A. et al. Iterative assembly of 17Yb atom arrays with cavity-enhanced optical lattices. PRX Quantum 5, 030316 (2024).

Article 

Google Scholar
 

Gyger, F. et al. Continuous operation of large-scale atom arrays in optical lattices. Phys. Rev. Res. 6, 033104 (2024).

Article 

Google Scholar
 

Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).

Article 
ADS 

Google Scholar
 

Peters, M. L. et al. Cavity-enabled real-time observation of individual atomic collisions. Preprint at https://arxiv.org/abs/2411.12622 (2024).

Grinkemeyer, B. et al. Error-detected quantum operations with neutral atoms mediated by an optical cavity. Science 387, 1301–1305 (2025).

Article 
MathSciNet 

Google Scholar
 

Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).

Article 
ADS 

Google Scholar
 

Pfister, C. et al. A universal test for gravitational decoherence. Nat. Commun. 7, 13022 (2016).

Article 
ADS 

Google Scholar
 

Borregaard, J. & Pikovski, I. Testing quantum theory on curved space-time with quantum networks. Phys. Rev. Research 7, 023192 (2025).

Article 

Google Scholar
 

Covey, J. P., Pikovski, I. & Borregaard, J. Probing curved spacetime with a distributed atomic processor clock. PRX Quantum 6, 030310 (2025).

Article 

Google Scholar
 

Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).

Article 
ADS 

Google Scholar
 

Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).

Article 
ADS 

Google Scholar
 

Cho, J. W. et al. Optical repumping of triplet-P states enhances magneto-optical trapping of ytterbium atoms. Phys. Rev. A 85, 035401 (2012).

Article 
ADS 

Google Scholar
 

Porsev, S. G., Rakhlina, Y. G. & Kozlov, M. G. Electric-dipole amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium. Phys. Rev. A 60, 2781–2785 (1999).

Article 
ADS 

Google Scholar
 

Scazza, F. Probing SU(N)-Symmetric Orbital Interactions with Ytterbium Fermi Gases in Optical Lattices. PhD thesis, LMU Munich (2015)

Bettermann, O. Interorbital Interactions in Ytterbium-171. PhD thesis, LMU Munich (2022).

Young, C. B. et al. An architecture for quantum networking of neutral atom processors. Appl. Phys. B 128, 151 (2022).

Article 
ADS 

Google Scholar