Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).
Pirandola, S. et al. Advances in quantum cryptography. Adv. Opt. Photon. 12, 1012 (2020).
Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).
Malia, B. K., Wu, Y., Martínez-Rincón, J. & Kasevich, M. A. Distributed quantum sensing with mode-entangled spin-squeezed atomic states. Nature 612, 661–665 (2022).
Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582–587 (2014).
Nichol, B. C. et al. An elementary quantum network of entangled optical atomic clocks. Nature 609, 689–694 (2022).
Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).
Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–308 (2012).
Fitzsimons, J. F. Private quantum computation: an introduction to blind quantum computing and related protocols. npj Quantum Inf. 3, 23 (2017).
Jiang, L., Taylor, J. M., Sørensen, A. S. & Lukin, M. D. Distributed quantum computation based on small quantum registers. Phys. Rev. A 76, 062323 (2007).
Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).
Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020).
Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).
van Leent, T. et al. Entangling single atoms over 33 km telecom fibre. Nature 607, 69–73 (2022).
Krutyanskiy, V. et al. Telecom-wavelength quantum repeater node based on a trapped-ion processor. Phys. Rev. Lett. 130, 213601 (2023).
Uysal, M. T. et al. Spin-photon entanglement of a single Er3+ ion in the telecom band. Phys. Rev. X. 15, 011071 (2025).
Covey, J. P., Weinfurter, H. & Bernien, H. Quantum networks with neutral atom processing nodes. npj Quantum Inf. 9, 90 (2023).
Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).
Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).
Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).
Ruskuc, A. et al. Multiplexed entanglement of multi-emitter quantum network nodes. Nature 639, 54–59 (2025).
Stolk, A. et al. Telecom-band quantum interference of frequency-converted photons from remote detuned NV centers. PRX Quantum 3, 020359 (2022).
Bersin, E. et al. Telecom networking with a diamond quantum memory. PRX Quantum 5, 010303 (2024).
Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).
Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).
Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).
Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37–42 (2015).
Huie, W., Menon, S. G., Bernien, H. & Covey, J. P. Multiplexed telecommunication-band quantum networking with atom arrays in optical cavities. Phys. Rev. Res. 3, 043154 (2021).
Li, Y. & Thompson, J. D. High-rate and high-fidelity modular interconnects between neutral atom quantum processors. PRX Quantum 5, 020363 (2024).
Canteri, M. et al. A photon-interfaced ten qubit quantum network node. Phys. Rev. Lett. 135, 080801 (2025).
Hartung, L., Seubert, M., Welte, S., Distante, E. & Rempe, G. A quantum-network register assembled with optical tweezers in an optical cavity. Science 385, 179–183 (2024).
Trupke, M. et al. Atom detection and photon production in a scalable, open, optical microcavity. Phys. Rev. Lett. 99, 063601 (2007).
Derntl, C. et al. Arrays of open, independently tunable microcavities. Opt. Express 22, 22111–22120 (2014).
Menon, S. G., Glachman, N., Pompili, M., Dibos, A. & Bernien, H. An integrated atom array-nanophotonic chip platform with background-free imaging. Nat. Commun. 15, 6156 (2024).
Shadmany, D. et al. Cavity QED in a high NA resonator. Sci. Adv. 11, eads8171 (2025).
Sunami, S., Tamiya, S., Inoue, R., Yamasaki, H. & Goban, A. Scalable networking of neutral-atom qubits: nanofiber-based approach for multiprocessor fault-tolerant quantum computer. PRX Quantum 6, 010101 (2025).
Huie, W. et al. Repetitive readout and real-time control of nuclear spin qubits in 171Yb atoms. PRX Quantum 4, 030337 (2023).
Jenkins, A., Lis, J. W., Senoo, A., McGrew, W. F. & Kaufman, A. M. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X 12, 021027 (2022).
Morigi, G., Eschner, J. & Keitel, C. H. Ground state laser cooling using electromagnetically induced transparency. Phys. Rev. Lett. 85, 4458–4461 (2000).
Lis, J. W. et al. Midcircuit operations using the omg architecture in neutral atom arrays. Phys. Rev. X 13, 041035 (2023).
Barnes, K. et al. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun. 13, 2779 (2022).
Chen, N. et al. Analyzing the Rydberg-based optical-metastable-ground architecture for 171Yb nuclear spins. Phys. Rev. A 105, 052438 (2022).
Ma, S. et al. High-fidelity gates and mid-circuit erasure conversion in an atomic qubit. Nature 622, 279–284 (2023).
Peper, M. et al. Spectroscopy and modeling of 171Yb Rydberg states for high-fidelity two-qubit gates. Phys. Rev. X 15, 011009 (2025).
Muniz, J. A. et al. High-fidelity universal gates in the 171Yb ground state nuclear spin qubit. PRX Quantum 6, 020334 (2025).
Madjarov, I. S. et al. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020).
Li, L., Huie, W., Chen, N., DeMarco, B. & Covey, J. P. Active cancellation of servo-induced noise on stabilized lasers via feedforward. Phys. Rev. Appl. 18, 064005 (2022).
Saha, S. et al. High-fidelity remote entanglement of trapped atoms mediated by time-bin photons. Nat. Commun. 16, 2533 (2025).
Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).
Pelucchi, E. et al. The potential and global outlook of integrated photonics for quantum technologies. Nat. Rev. Phys. 4, 194–208 (2021).
Wollman, E. E. et al. Kilopixel array of superconducting nanowire single-photon detectors. Opt. Express 27, 35279–35289 (2019).
Oripov, B. G. et al. A superconducting nanowire single-photon camera with 400,000 pixels. Nature 622, 730–734 (2023).
Fleming, F. et al. High-efficiency, high-count-rate 2D superconducting nanowire single-photon detector array. Opt. Express 33, 27602–27614 (2025).
Shaw, A. L. et al. Erasure cooling, control, and hyperentanglement of motion in optical tweezers. Science 388, 845–849 (2025).
Graham, T. M. et al. Mid-circuit measurements on a neutral atom quantum processor. Phys. Rev. X 13, 041051 (2023).
Singh, K. et al. Mid-circuit correction of correlated phase errors using an array of spectator qubits. Science 380, 1265–1269 (2023).
Nakamura, Y. et al. A hybrid atom tweezer array of nuclear spin and optical clock qubits. Phys. Rev. X 14, 041062 (2024).
Norcia, M. A. et al. Midcircuit qubit measurement and rearrangement in a 171Yb atomic array. Phys. Rev. X 13, 041034 (2023).
Hu, B. et al. Site-selective cavity readout and classical error correction of a 5-bit atomic register. Phys. Rev. Lett. 134, 120801 (2025).
Deist, E. et al. Mid-circuit cavity measurement in a neutral atom array. Phys. Rev. Lett. 129, 203602 (2022).
Bluvstein, D. et al. Logical quantum processor based on reconfigurable atom arrays. Nature 626, 58–65 (2024).
Tang, Z.-M., Yu, Y.-M. & Dong, C.-Z. Determination of static dipole polarizabilities of Yb atom. Chinese Phys. B 27, 063101 (2018).
Endres, M. et al. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays. Science 354, 1024–1027 (2016).
Norcia, M. A. et al. Iterative assembly of 17Yb atom arrays with cavity-enhanced optical lattices. PRX Quantum 5, 030316 (2024).
Gyger, F. et al. Continuous operation of large-scale atom arrays in optical lattices. Phys. Rev. Res. 6, 033104 (2024).
Periwal, A. et al. Programmable interactions and emergent geometry in an array of atom clouds. Nature 600, 630–635 (2021).
Peters, M. L. et al. Cavity-enabled real-time observation of individual atomic collisions. Preprint at https://arxiv.org/abs/2411.12622 (2024).
Grinkemeyer, B. et al. Error-detected quantum operations with neutral atoms mediated by an optical cavity. Science 387, 1301–1305 (2025).
Graham, T. M. et al. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature 604, 457–462 (2022).
Pfister, C. et al. A universal test for gravitational decoherence. Nat. Commun. 7, 13022 (2016).
Borregaard, J. & Pikovski, I. Testing quantum theory on curved space-time with quantum networks. Phys. Rev. Research 7, 023192 (2025).
Covey, J. P., Pikovski, I. & Borregaard, J. Probing curved spacetime with a distributed atomic processor clock. PRX Quantum 6, 030310 (2025).
Wcisło, P. et al. New bounds on dark matter coupling from a global network of optical atomic clocks. Sci. Adv. 4, eaau4869 (2018).
Kennedy, C. J. et al. Precision metrology meets cosmology: improved constraints on ultralight dark matter from atom-cavity frequency comparisons. Phys. Rev. Lett. 125, 201302 (2020).
Cho, J. W. et al. Optical repumping of triplet-P states enhances magneto-optical trapping of ytterbium atoms. Phys. Rev. A 85, 035401 (2012).
Porsev, S. G., Rakhlina, Y. G. & Kozlov, M. G. Electric-dipole amplitudes, lifetimes, and polarizabilities of the low-lying levels of atomic ytterbium. Phys. Rev. A 60, 2781–2785 (1999).
Scazza, F. Probing SU(N)-Symmetric Orbital Interactions with Ytterbium Fermi Gases in Optical Lattices. PhD thesis, LMU Munich (2015)
Bettermann, O. Interorbital Interactions in Ytterbium-171. PhD thesis, LMU Munich (2022).
Young, C. B. et al. An architecture for quantum networking of neutral atom processors. Appl. Phys. B 128, 151 (2022).