Carniani, S. et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 633, 318–322 (2024).

Article 

Google Scholar
 

Mirocha, J. & Furlanetto, S. R. What does the first highly redshifted 21-cm detection tell us about early galaxies? Mon. Not. R. Astron. Soc. 483, 1980–1992 (2019).

Article 
ADS 

Google Scholar
 

Sikder, S., Barkana, R., Fialkov, A. & Reis, I. Strong 21-cm fluctuations and anisotropy due to the line-of-sight effect of radio galaxies at cosmic dawn. Mon. Not. R. Astron. Soc. 527, 10975–10985 (2024).

Article 
ADS 

Google Scholar
 

Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952).

Article 

Google Scholar
 

Field, G. B. The spin temperature of intergalactic neutral hydrogen. Astrophys. J. 129, 536 (1959).

Article 
ADS 

Google Scholar
 

Field, G. B. The time relaxation of a resonance-line profile. Astrophys. J. 129, 551 (1959).

Article 
ADS 

Google Scholar
 

Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997).

Article 
ADS 

Google Scholar
 

Barkana, R. & Loeb, A. Probing the epoch of early baryonic infall through 21-cm fluctuations. Mon. Not. R. Astron. Soc. 363, L36–L40 (2005).

Article 
ADS 

Google Scholar
 

Naoz, S. & Barkana, R. Growth of linear perturbations before the era of the first galaxies. Mon. Not. R. Astron. Soc. 362, 1047–1053 (2005).

Article 
ADS 

Google Scholar
 

Mondal, R. & Barkana, R. Prospects for precision cosmology with the 21 cm signal from the dark ages. Nat. Astron. 7, 1025–1030 (2023).

Article 
ADS 

Google Scholar
 

Cohen, A., Fialkov, A., Barkana, R. & Lotem, M. Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017).

Article 
ADS 

Google Scholar
 

Cohen, A., Fialkov, A. & Barkana, R. Charting the parameter space of the 21-cm power spectrum. Mon. Not. R. Astron. Soc. 478, 2193–2217 (2018).

Article 
ADS 

Google Scholar
 

Reis, I., Fialkov, A. & Barkana, R. The subtlety of Ly α photons: changing the expected range of the 21-cm signal. Mon. Not. R. Astron. Soc. 506, 5479–5493 (2021).

Article 
ADS 

Google Scholar
 

Trott, C. M. et al. Deep multiredshift limits on Epoch of Reionization 21 cm power spectra from four seasons of Murchison Widefield Array observations. Mon. Not. R. Astron. Soc. 493, 4711–4727 (2020).

Article 
ADS 

Google Scholar
 

Garsden, H. et al. A 21-cm power spectrum at 48 MHz, using the Owens Valley Long Wavelength Array. Mon. Not. R. Astron. Soc. 506, 5802–5817 (2021).

Article 
ADS 

Google Scholar
 

Munshi, S. et al. First upper limits on the 21 cm signal power spectrum from cosmic dawn from one night of observations with NenuFAR (Corrigendum). Astron. Astrophys. 687, C1 (2024).

Article 

Google Scholar
 

HERA Collaborationet al. Improved constraints on the 21 cm EoR power spectrum and the X-ray heating of the IGM with HERA phase I observations. Astrophys. J. 945, 124 (2023).

Article 
ADS 

Google Scholar
 

Mertens, F. G. et al. Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z ≈ 9.1 from LOFAR. Mon. Not. R. Astron. Soc. 493, 1662–1685 (2020).

Article 
ADS 

Google Scholar
 

Koopmans, L. et al. The cosmic dawn and Epoch of Reionisation with SKA. PoS AASKA14, 001 (2015).


Google Scholar
 

Voytek, T. C., Natarajan, A., Jáuregui García, J. M., Peterson, J. B. & López-Cruz, O. Probing the Dark Ages at z ~20: the SCI-HI 21 cm all-sky spectrum experiment. Astrophys. J. Lett. 782, L9 (2014).

Article 
ADS 

Google Scholar
 

Philip, L. et al. Probing radio intensity at high-Z from Marion: 2017 instrument. J. Astron. Instrum. 8, 1950004 (2019).

Article 

Google Scholar
 

Monsalve, R. A. et al. Mapper of the IGM spin temperature: instrument overview. Mon. Not. R. Astron. Soc. 530, 4125–4147 (2024).

Article 
ADS 

Google Scholar
 

de Lera Acedo, E. et al. The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5–28. Nat. Astron. 6, 984–998 (2022).

Article 
ADS 

Google Scholar
 

Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).

Article 
ADS 

Google Scholar
 

Singh, S. et al. On the detection of a cosmic dawn signal in the radio background. Nat. Astron. 6, 607–617 (2022).

Article 
ADS 

Google Scholar
 

Burns, J. et al. Global 21-cm cosmology from the farside of the moon. Preprint at https://doi.org/10.48550/arXiv.2103.05085 (2021).

Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).

Article 
ADS 

Google Scholar
 

Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D. & Hirata, C. M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70–73 (2012).

Article 
ADS 

Google Scholar
 

Muñoz, J. B. Robust velocity-induced acoustic oscillations at cosmic dawn. Phys. Rev. D 100, 063538 (2019).

Article 
ADS 
MathSciNet 

Google Scholar
 

Ahn, K. et al. The 21 centimeter background from the Cosmic Dark Ages: minihalos and the intergalactic medium before reionization. New Astron. Rev. 50, 179–183 (2006).

Article 
ADS 

Google Scholar
 

Shapiro, P. R. et al. The 21 cm background from the Cosmic Dark Ages: minihalos and the intergalactic medium before reionization. Astrophys. J. 646, 681–690 (2006).

Article 
ADS 

Google Scholar
 

Xu, Y., Yue, B. & Chen, X. The global 21 cm absorption from cosmic dawn with inhomogeneous gas distribution. Astrophys. J. 869, 42 (2018).

Article 
ADS 

Google Scholar
 

Xu, Y., Yue, B. & Chen, X. Maximum absorption of the global 21 cm spectrum in the standard cosmological model. Astrophys. J. 923, 98 (2021).

Article 
ADS 

Google Scholar
 

Ali-Haïmoud, Y., Meerburg, P. D. & Yuan, S. New light on 21 cm intensity fluctuations from the dark ages. Phys. Rev. D 89, 083506 (2014).

Article 
ADS 

Google Scholar
 

Cain, C., D’Aloisio, A., Iršič, V., McQuinn, M. & Trac, H. A model-insensitive baryon acoustic oscillation feature in the 21 cm signal from reionization. Astrophys. J. 898, 168 (2020).

Article 
ADS 

Google Scholar
 

Bode, P., Ostriker, J. P. & Turok, N. Halo formation in warm dark matter models. Astrophys. J. 556, 93–107 (2001).

Article 
ADS 

Google Scholar
 

Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158–1161 (2000).

Article 
ADS 

Google Scholar
 

Villasenor, B., Robertson, B., Madau, P. & Schneider, E. New constraints on warm dark matter from the Lyman-α forest power spectrum. Phys. Rev. D 108, 023502 (2023).

Article 
ADS 

Google Scholar
 

Rogers, K. K. & Peiris, H. V. Strong bound on canonical ultralight axion dark matter from the Lyman-alpha forest. Phys. Rev. Lett. 126, 071302 (2021).

Article 
ADS 

Google Scholar
 

Iršič, V., Viel, M., Haehnelt, M. G., Bolton, J. S. & Becker, G. D. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett. 119, 031302 (2017).

Article 
ADS 

Google Scholar
 

Garzilli, A., Magalich, A., Ruchayskiy, O. & Boyarsky, A. How to constrain warm dark matter with the Lyman-α forest. Mon. Not. R. Astron. Soc. 502, 2356–2363 (2021).

Article 
ADS 

Google Scholar
 

Nadler, E. O. et al. Constraints on dark matter properties from observations of Milky Way satellite galaxies. Phys. Rev. Lett. 126, 091101 (2021).

Article 
ADS 

Google Scholar
 

Martins, J. S., Rosenfeld, R. & Sobreira, F. Forecasts for warm dark matter from photometric galaxy surveys. Mon. Not. R. Astron. Soc. 481, 1290–1299 (2018).

Article 
ADS 

Google Scholar
 

Muñoz, J. B., Dvorkin, C. & Cyr-Racine, F.-Y. Probing the small-scale matter power spectrum with large-scale 21-cm data. Phys. Rev. D 101, 063526 (2020).

Article 
ADS 

Google Scholar
 

Flitter, J. & Kovetz, E. D. Closing the window on fuzzy dark matter with the 21-cm signal. Phys. Rev. D 106, 063504 (2022).

Article 
ADS 

Google Scholar
 

Barkana, R. & Loeb, A. Detecting the earliest galaxies through two new sources of 21 centimeter fluctuations. Astrophys. J. 626, 1–11 (2005).

Article 
ADS 

Google Scholar
 

Mondal, R., Barkana, R. & Fialkov, A. Constraining exotic dark matter models with the dark ages 21-cm signal. Mon. Not. R. Astron. Soc. 527, 1461–1471 (2024).

Article 
ADS 

Google Scholar
 

Kim, E.-J., Olinto, A. V. & Rosner, R. Generation of density perturbations by primordial magnetic fields. Astrophys. J. 468, 28 (1996).

Article 
ADS 

Google Scholar
 

Adi, T., Cruz, H. A. G. & Kamionkowski, M. Primordial density perturbations from magnetic fields. Phys. Rev. D 108, 023521 (2023).

Article 
ADS 
MathSciNet 

Google Scholar
 

Mohapatra, V., Nayak, A. C. & Natwariya, P. K. Primordial magnetic fields in light of dark ages global 21-cm signal. Phys. Rev. D 110, 123506 (2024).

Article 

Google Scholar
 

Muñoz, J. B., Kovetz, E. D. & Ali-Haïmoud, Y. Heating of baryons due to scattering with dark matter during the dark ages. Phys. Rev. D 92, 083528 (2015).

Article 
ADS 

Google Scholar
 

Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: the 21 cm transition and the high-redshift Universe. Phys. Rep. 433, 181–301 (2006).

Article 
ADS 

Google Scholar
 

Loeb, A. & Furlanetto, S. R. The First Galaxies in the Universe (Princeton Univ. Press, 2013).

Barkana, R. The rise of the first stars: supersonic streaming, radiative feedback, and 21-cm cosmology. Phys. Rep. 645, 1–59 (2016).

Article 
ADS 
MathSciNet 

Google Scholar
 

Barkana, R. The Encyclopedia of Cosmology. Volume 1: Galaxy Formation and Evolution (Tel Aviv University, 2018).

Mesinger, A. The Cosmic 21-cm Revolution; Charting the First Billion Years of our Universe (IOP Publishing, 2019).

Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).

Article 

Google Scholar
 

Chen, X. & Miralda-Escudé, J. The spin–kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption. Astrophys. J. 602, 1–11 (2004).

Article 
ADS 

Google Scholar
 

Chuzhoy, L. & Shapiro, P. R. Ultraviolet pumping of hyperfine transitions in the light elements, with application to 21 cm hydrogen and 92 cm deuterium lines from the early Universe. Astrophys. J. 651, 1–7 (2006).

Article 
ADS 

Google Scholar
 

Chuzhoy, L. & Shapiro, P. R. Heating and cooling of the early intergalactic medium by resonance photons. Astrophys. J. 655, 843–846 (2007).

Article 
ADS 

Google Scholar
 

Furlanetto, S. R. & Pritchard, J. R. The scattering of Lyman-series photons in the intergalactic medium. Mon. Not. R. Astron. Soc. 372, 1093–1103 (2006).

Article 
ADS 

Google Scholar
 

Venumadhav, T., Dai, L., Kaurov, A. & Zaldarriaga, M. Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn. Phys. Rev. D 98, 103513 (2018).

Article 
ADS 

Google Scholar
 

Meiksin, A. Intergalactic heating by Lyα photons including hyperfine structure corrections. Res. Notes AAS 5, 126 (2021).

Article 
ADS 

Google Scholar
 

Yoshida, N., Omukai, K., Hernquist, L. & Abel, T. Formation of primordial stars in a ΛCDM Universe. Astrophys. J. 652, 6–25 (2006).

Article 
ADS 

Google Scholar
 

Yoshida, N., Oh, S. P., Kitayama, T. & Hernquist, L. Early cosmological H II/He III regions and their impact on second-generation star formation. Astrophys. J. 663, 687–707 (2007).

Article 
ADS 

Google Scholar
 

Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron. 6, 79–117 (2001).

Article 
ADS 

Google Scholar
 

Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

Article 
ADS 

Google Scholar
 

O’Leary, R. M. & McQuinn, M. The formation of the first cosmic structures and the physics of the z ~20 Universe. Astrophys. J. 760, 4 (2012).

Article 
ADS 

Google Scholar
 

Park, H., Ahn, K., Yoshida, N. & Hirano, S. First structure formation under the influence of gas–dark matter streaming velocity and density: impact of the “baryons trace dark matter” approximation. Astrophys. J. 900, 30 (2020).

Article 
ADS 

Google Scholar
 

Greif, T. H., White, S. D. M., Klessen, R. S. & Springel, V. The delay of population III star formation by supersonic streaming velocities. Astrophys. J. 736, 147 (2011).

Article 
ADS 

Google Scholar
 

Naoz, S., Yoshida, N. & Gnedin, N. Y. Simulations of early baryonic structure formation with stream velocity. II. The gas fraction. Astrophys. J. 763, 27 (2013).

Article 
ADS 

Google Scholar
 

Richardson, M. L. A., Scannapieco, E. & Thacker, R. J. Hybrid cosmological simulations with stream velocities. Astrophys. J. 771, 81 (2013).

Article 
ADS 

Google Scholar
 

Asaba, S., Ichiki, K. & Tashiro, H. Effect of supersonic relative motion between baryons and dark matter on collapsed objects. Phys. Rev. D 93, 023518 (2016).

Article 
ADS 

Google Scholar
 

Schauer, A. T. P., Glover, S. C. O., Klessen, R. S. & Ceverino, D. The influence of streaming velocities on the formation of the first stars. Mon. Not. R. Astron. Soc. 484, 3510–3521 (2019).

Article 
ADS 

Google Scholar
 

Lewis, A. & Challinor, A. 21cm angular-power spectrum from the dark ages. Phys. Rev. D 76, 083005 (2007).

Article 
ADS 

Google Scholar
 

Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002).

Article 
ADS 

Google Scholar
 

Fialkov, A., Barkana, R. & Visbal, E. The observable signature of late heating of the Universe during cosmic reionization. Nature 506, 197–199 (2014).

Article 
ADS 

Google Scholar