Carniani, S. et al. Spectroscopic confirmation of two luminous galaxies at a redshift of 14. Nature 633, 318–322 (2024).
Mirocha, J. & Furlanetto, S. R. What does the first highly redshifted 21-cm detection tell us about early galaxies? Mon. Not. R. Astron. Soc. 483, 1980–1992 (2019).
Sikder, S., Barkana, R., Fialkov, A. & Reis, I. Strong 21-cm fluctuations and anisotropy due to the line-of-sight effect of radio galaxies at cosmic dawn. Mon. Not. R. Astron. Soc. 527, 10975–10985 (2024).
Wouthuysen, S. A. On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31–32 (1952).
Field, G. B. The spin temperature of intergalactic neutral hydrogen. Astrophys. J. 129, 536 (1959).
Field, G. B. The time relaxation of a resonance-line profile. Astrophys. J. 129, 551 (1959).
Madau, P., Meiksin, A. & Rees, M. J. 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429–444 (1997).
Barkana, R. & Loeb, A. Probing the epoch of early baryonic infall through 21-cm fluctuations. Mon. Not. R. Astron. Soc. 363, L36–L40 (2005).
Naoz, S. & Barkana, R. Growth of linear perturbations before the era of the first galaxies. Mon. Not. R. Astron. Soc. 362, 1047–1053 (2005).
Mondal, R. & Barkana, R. Prospects for precision cosmology with the 21 cm signal from the dark ages. Nat. Astron. 7, 1025–1030 (2023).
Cohen, A., Fialkov, A., Barkana, R. & Lotem, M. Charting the parameter space of the global 21-cm signal. Mon. Not. R. Astron. Soc. 472, 1915–1931 (2017).
Cohen, A., Fialkov, A. & Barkana, R. Charting the parameter space of the 21-cm power spectrum. Mon. Not. R. Astron. Soc. 478, 2193–2217 (2018).
Reis, I., Fialkov, A. & Barkana, R. The subtlety of Ly α photons: changing the expected range of the 21-cm signal. Mon. Not. R. Astron. Soc. 506, 5479–5493 (2021).
Trott, C. M. et al. Deep multiredshift limits on Epoch of Reionization 21 cm power spectra from four seasons of Murchison Widefield Array observations. Mon. Not. R. Astron. Soc. 493, 4711–4727 (2020).
Garsden, H. et al. A 21-cm power spectrum at 48 MHz, using the Owens Valley Long Wavelength Array. Mon. Not. R. Astron. Soc. 506, 5802–5817 (2021).
Munshi, S. et al. First upper limits on the 21 cm signal power spectrum from cosmic dawn from one night of observations with NenuFAR (Corrigendum). Astron. Astrophys. 687, C1 (2024).
HERA Collaborationet al. Improved constraints on the 21 cm EoR power spectrum and the X-ray heating of the IGM with HERA phase I observations. Astrophys. J. 945, 124 (2023).
Mertens, F. G. et al. Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z ≈ 9.1 from LOFAR. Mon. Not. R. Astron. Soc. 493, 1662–1685 (2020).
Koopmans, L. et al. The cosmic dawn and Epoch of Reionisation with SKA. PoS AASKA14, 001 (2015).
Voytek, T. C., Natarajan, A., Jáuregui García, J. M., Peterson, J. B. & López-Cruz, O. Probing the Dark Ages at z ~20: the SCI-HI 21 cm all-sky spectrum experiment. Astrophys. J. Lett. 782, L9 (2014).
Philip, L. et al. Probing radio intensity at high-Z from Marion: 2017 instrument. J. Astron. Instrum. 8, 1950004 (2019).
Monsalve, R. A. et al. Mapper of the IGM spin temperature: instrument overview. Mon. Not. R. Astron. Soc. 530, 4125–4147 (2024).
de Lera Acedo, E. et al. The REACH radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5–28. Nat. Astron. 6, 984–998 (2022).
Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J. & Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67–70 (2018).
Singh, S. et al. On the detection of a cosmic dawn signal in the radio background. Nat. Astron. 6, 607–617 (2022).
Burns, J. et al. Global 21-cm cosmology from the farside of the moon. Preprint at https://doi.org/10.48550/arXiv.2103.05085 (2021).
Tseliakhovich, D. & Hirata, C. Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010).
Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D. & Hirata, C. M. The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70–73 (2012).
Muñoz, J. B. Robust velocity-induced acoustic oscillations at cosmic dawn. Phys. Rev. D 100, 063538 (2019).
Ahn, K. et al. The 21 centimeter background from the Cosmic Dark Ages: minihalos and the intergalactic medium before reionization. New Astron. Rev. 50, 179–183 (2006).
Shapiro, P. R. et al. The 21 cm background from the Cosmic Dark Ages: minihalos and the intergalactic medium before reionization. Astrophys. J. 646, 681–690 (2006).
Xu, Y., Yue, B. & Chen, X. The global 21 cm absorption from cosmic dawn with inhomogeneous gas distribution. Astrophys. J. 869, 42 (2018).
Xu, Y., Yue, B. & Chen, X. Maximum absorption of the global 21 cm spectrum in the standard cosmological model. Astrophys. J. 923, 98 (2021).
Ali-Haïmoud, Y., Meerburg, P. D. & Yuan, S. New light on 21 cm intensity fluctuations from the dark ages. Phys. Rev. D 89, 083506 (2014).
Cain, C., D’Aloisio, A., Iršič, V., McQuinn, M. & Trac, H. A model-insensitive baryon acoustic oscillation feature in the 21 cm signal from reionization. Astrophys. J. 898, 168 (2020).
Bode, P., Ostriker, J. P. & Turok, N. Halo formation in warm dark matter models. Astrophys. J. 556, 93–107 (2001).
Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158–1161 (2000).
Villasenor, B., Robertson, B., Madau, P. & Schneider, E. New constraints on warm dark matter from the Lyman-α forest power spectrum. Phys. Rev. D 108, 023502 (2023).
Rogers, K. K. & Peiris, H. V. Strong bound on canonical ultralight axion dark matter from the Lyman-alpha forest. Phys. Rev. Lett. 126, 071302 (2021).
Iršič, V., Viel, M., Haehnelt, M. G., Bolton, J. S. & Becker, G. D. First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations. Phys. Rev. Lett. 119, 031302 (2017).
Garzilli, A., Magalich, A., Ruchayskiy, O. & Boyarsky, A. How to constrain warm dark matter with the Lyman-α forest. Mon. Not. R. Astron. Soc. 502, 2356–2363 (2021).
Nadler, E. O. et al. Constraints on dark matter properties from observations of Milky Way satellite galaxies. Phys. Rev. Lett. 126, 091101 (2021).
Martins, J. S., Rosenfeld, R. & Sobreira, F. Forecasts for warm dark matter from photometric galaxy surveys. Mon. Not. R. Astron. Soc. 481, 1290–1299 (2018).
Muñoz, J. B., Dvorkin, C. & Cyr-Racine, F.-Y. Probing the small-scale matter power spectrum with large-scale 21-cm data. Phys. Rev. D 101, 063526 (2020).
Flitter, J. & Kovetz, E. D. Closing the window on fuzzy dark matter with the 21-cm signal. Phys. Rev. D 106, 063504 (2022).
Barkana, R. & Loeb, A. Detecting the earliest galaxies through two new sources of 21 centimeter fluctuations. Astrophys. J. 626, 1–11 (2005).
Mondal, R., Barkana, R. & Fialkov, A. Constraining exotic dark matter models with the dark ages 21-cm signal. Mon. Not. R. Astron. Soc. 527, 1461–1471 (2024).
Kim, E.-J., Olinto, A. V. & Rosner, R. Generation of density perturbations by primordial magnetic fields. Astrophys. J. 468, 28 (1996).
Adi, T., Cruz, H. A. G. & Kamionkowski, M. Primordial density perturbations from magnetic fields. Phys. Rev. D 108, 023521 (2023).
Mohapatra, V., Nayak, A. C. & Natwariya, P. K. Primordial magnetic fields in light of dark ages global 21-cm signal. Phys. Rev. D 110, 123506 (2024).
Muñoz, J. B., Kovetz, E. D. & Ali-Haïmoud, Y. Heating of baryons due to scattering with dark matter during the dark ages. Phys. Rev. D 92, 083528 (2015).
Furlanetto, S. R., Oh, S. P. & Briggs, F. H. Cosmology at low frequencies: the 21 cm transition and the high-redshift Universe. Phys. Rep. 433, 181–301 (2006).
Loeb, A. & Furlanetto, S. R. The First Galaxies in the Universe (Princeton Univ. Press, 2013).
Barkana, R. The rise of the first stars: supersonic streaming, radiative feedback, and 21-cm cosmology. Phys. Rep. 645, 1–59 (2016).
Barkana, R. The Encyclopedia of Cosmology. Volume 1: Galaxy Formation and Evolution (Tel Aviv University, 2018).
Mesinger, A. The Cosmic 21-cm Revolution; Charting the First Billion Years of our Universe (IOP Publishing, 2019).
Planck Collaborationet al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020).
Chen, X. & Miralda-Escudé, J. The spin–kinetic temperature coupling and the heating rate due to Lyα scattering before reionization: predictions for 21 centimeter emission and absorption. Astrophys. J. 602, 1–11 (2004).
Chuzhoy, L. & Shapiro, P. R. Ultraviolet pumping of hyperfine transitions in the light elements, with application to 21 cm hydrogen and 92 cm deuterium lines from the early Universe. Astrophys. J. 651, 1–7 (2006).
Chuzhoy, L. & Shapiro, P. R. Heating and cooling of the early intergalactic medium by resonance photons. Astrophys. J. 655, 843–846 (2007).
Furlanetto, S. R. & Pritchard, J. R. The scattering of Lyman-series photons in the intergalactic medium. Mon. Not. R. Astron. Soc. 372, 1093–1103 (2006).
Venumadhav, T., Dai, L., Kaurov, A. & Zaldarriaga, M. Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn. Phys. Rev. D 98, 103513 (2018).
Meiksin, A. Intergalactic heating by Lyα photons including hyperfine structure corrections. Res. Notes AAS 5, 126 (2021).
Yoshida, N., Omukai, K., Hernquist, L. & Abel, T. Formation of primordial stars in a ΛCDM Universe. Astrophys. J. 652, 6–25 (2006).
Yoshida, N., Oh, S. P., Kitayama, T. & Hernquist, L. Early cosmological H II/He III regions and their impact on second-generation star formation. Astrophys. J. 663, 687–707 (2007).
Springel, V., Yoshida, N. & White, S. D. M. GADGET: a code for collisionless and gasdynamical cosmological simulations. New Astron. 6, 79–117 (2001).
Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).
O’Leary, R. M. & McQuinn, M. The formation of the first cosmic structures and the physics of the z ~20 Universe. Astrophys. J. 760, 4 (2012).
Park, H., Ahn, K., Yoshida, N. & Hirano, S. First structure formation under the influence of gas–dark matter streaming velocity and density: impact of the “baryons trace dark matter” approximation. Astrophys. J. 900, 30 (2020).
Greif, T. H., White, S. D. M., Klessen, R. S. & Springel, V. The delay of population III star formation by supersonic streaming velocities. Astrophys. J. 736, 147 (2011).
Naoz, S., Yoshida, N. & Gnedin, N. Y. Simulations of early baryonic structure formation with stream velocity. II. The gas fraction. Astrophys. J. 763, 27 (2013).
Richardson, M. L. A., Scannapieco, E. & Thacker, R. J. Hybrid cosmological simulations with stream velocities. Astrophys. J. 771, 81 (2013).
Asaba, S., Ichiki, K. & Tashiro, H. Effect of supersonic relative motion between baryons and dark matter on collapsed objects. Phys. Rev. D 93, 023518 (2016).
Schauer, A. T. P., Glover, S. C. O., Klessen, R. S. & Ceverino, D. The influence of streaming velocities on the formation of the first stars. Mon. Not. R. Astron. Soc. 484, 3510–3521 (2019).
Lewis, A. & Challinor, A. 21cm angular-power spectrum from the dark ages. Phys. Rev. D 76, 083005 (2007).
Lewis, A. & Bridle, S. Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002).
Fialkov, A., Barkana, R. & Visbal, E. The observable signature of late heating of the Universe during cosmic reionization. Nature 506, 197–199 (2014).