Zhang, X., Chi, Z., Zhang, Y., Liu, S. & Xu, J. Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C 1, 3376–3390 (2013).

Article 
CAS 

Google Scholar
 

Yao, Z. Q. et al. A dual-stimuli-responsive coordination network featuring reversible wide-range luminescence-tuning behavior. Angew. Chem. Int. Ed. Engl. 58, 5614–5618 (2019).

Article 
CAS 
PubMed 

Google Scholar
 

Shi, Y. et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc. 141, 6504–6508 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Wang, L., Ye, K.-Q. & Zhang, H.-Y. Organic materials with hydrostatic pressure induced mechanochromic properties. Chin. Chem. Lett. 27, 1367–1375 (2016).

Article 
CAS 

Google Scholar
 

Ma, Z. et al. A mechanochromic single crystal: turning two color changes into a tricolored switch. Angew. Chem. Int. Ed. Engl. 55, 519–522 (2016).

Article 
CAS 
PubMed 

Google Scholar
 

Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Yao, L., Yang, B. & Ma, Y. Progress in next-generation organic electroluminescent materials: Material design beyond exciton statistics. Sci. China Chem. 57, 335–345 (2014).

Article 
CAS 

Google Scholar
 

Xue, J. et al. Highly efficient thermally activated delayed fluorescence via J-aggregates with strong intermolecular charge transfer. Adv. Mater. 31, 1808242 (2019).

Article 

Google Scholar
 

Zobel, J. P., Wernbacher, A. M. & Gonzalez, L. Efficient reverse intersystem crossing in carbene-copper-amide TADF emitters via an intermediate triplet state. Angew. Chem. Int. Ed. Engl. 62, e202217620 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Phan Huu, D. K. A. et al. Thermally activated delayed fluorescence: polarity, rigidity, and disorder in condensed phases. J. Am. Chem. Soc. 144, 15211–15222 (2022).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xie, Z. et al. White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluorescence properties. Angew. Chem. Int. Ed. Engl. 54, 7181–7184 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Tsujimoto, H. et al. Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer. J. Am. Chem. Soc. 139, 4894–4900 (2017).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Okazaki, M. et al. Thermally activated delayed fluorescent phenothiazine-dibenzo[a,j]phenazine-phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem. Sci. 8, 2677–2686 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Pashazadeh, R. et al. Multicolor luminescence switching and controllable thermally activated delayed fluorescence turn on/turn off in carbazole–quinoxaline–carbazole triads. J. Phys. Chem. Lett. 9, 1172–1177 (2018).

Article 
CAS 
PubMed 

Google Scholar
 

Zhao, C. et al. Thermally activated delayed fluorescence with dual-emission and pressure-induced bidirectional shifting: cooperative effects of intramolecular and intermolecular energy transfer. Chem. Sci. 14, 1089–1096 (2023).

Article 
CAS 
PubMed 

Google Scholar
 

Ishimatsu, R. et al. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 53, 6993–6996 (2014).

Article 
CAS 
PubMed 

Google Scholar
 

Etherington, M. K. et al. Persistent dimer emission in thermally activated delayed fluorescence materials. J. Phys. Chem. C 123, 11109–11117 (2019).

Article 
CAS 

Google Scholar
 

Li, J. et al. Luminogens based on cyano-substituted anthracene isomers: Different molecular packing and distinct piezochromic properties. Adv. Opt. Mater. 9, 2100813 (2021).

Article 
CAS 

Google Scholar
 

Nagura, K. et al. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 135, 10322–10325 (2013).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lv, Y., Liu, Y., Ye, X., Liu, G. & Tao, X. The effect of mechano-stimuli on the amorphous-to-crystalline transition of mechanochromic luminescent materials. CrystEngComm 17, 526–531 (2015).

Article 
CAS 

Google Scholar
 

Li, Y. et al. Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Front. Phys. 8, 576862 (2020).

Article 

Google Scholar
 

Engelborghs, A. S. Y. The correct use of “average” fluorescence parameters. Photochem. Photobiol. 67, 475–486 (1998).

Article 

Google Scholar
 

Thor, W., Bünzli, J. C. G., Wong, K. L. & Tanner, P. A. Shedding light on luminescence lifetime measurement and associated data treatment. Adv. Photonics Res. 6, 2400081 (2024).

Article 

Google Scholar
 

Eng, J. & Penfold, T. J. Open questions on the photophysics of thermally activated delayed fluorescence. Commun. Chem. 4, 91 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Noda, H., Nakanotani, H. & Adachi, C. Excited state engineering for efficient reverse intersystem crossing. Sci. Adv. 4, eaao6910 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Liu, J., Feng, R.-R., Zhou, L., Gai, F. & Zhang, W. Photoenhancement of the C≡N stretching vibration intensity of aromatic nitriles. J. Phys. Chem. Lett. 13, 9745–9751 (2022).

Article 
CAS 
PubMed 

Google Scholar
 

Gu, Y. et al. Pressure-induced emission enhancement of carbazole: The restriction of intramolecular vibration. J. Phys. Chem. Lett. 8, 4191–4196 (2017).

Article 
CAS 
PubMed 

Google Scholar
 

Wang, Y. et al. Pressure-engineered through-space conjugation for precise control of clusteroluminescence. Angew. Chem. Int. Ed. Engl. 64, e202420502 (2025).

Article 
CAS 
PubMed 

Google Scholar