Zhang, X., Chi, Z., Zhang, Y., Liu, S. & Xu, J. Recent advances in mechanochromic luminescent metal complexes. J. Mater. Chem. C 1, 3376–3390 (2013).
Yao, Z. Q. et al. A dual-stimuli-responsive coordination network featuring reversible wide-range luminescence-tuning behavior. Angew. Chem. Int. Ed. Engl. 58, 5614–5618 (2019).
Shi, Y. et al. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. J. Am. Chem. Soc. 141, 6504–6508 (2019).
Wang, L., Ye, K.-Q. & Zhang, H.-Y. Organic materials with hydrostatic pressure induced mechanochromic properties. Chin. Chem. Lett. 27, 1367–1375 (2016).
Ma, Z. et al. A mechanochromic single crystal: turning two color changes into a tricolored switch. Angew. Chem. Int. Ed. Engl. 55, 519–522 (2016).
Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).
Zhang, Q. et al. Design of efficient thermally activated delayed fluorescence materials for pure blue organic light emitting diodes. J. Am. Chem. Soc. 134, 14706–14709 (2012).
Yao, L., Yang, B. & Ma, Y. Progress in next-generation organic electroluminescent materials: Material design beyond exciton statistics. Sci. China Chem. 57, 335–345 (2014).
Xue, J. et al. Highly efficient thermally activated delayed fluorescence via J-aggregates with strong intermolecular charge transfer. Adv. Mater. 31, 1808242 (2019).
Zobel, J. P., Wernbacher, A. M. & Gonzalez, L. Efficient reverse intersystem crossing in carbene-copper-amide TADF emitters via an intermediate triplet state. Angew. Chem. Int. Ed. Engl. 62, e202217620 (2023).
Phan Huu, D. K. A. et al. Thermally activated delayed fluorescence: polarity, rigidity, and disorder in condensed phases. J. Am. Chem. Soc. 144, 15211–15222 (2022).
Xie, Z. et al. White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluorescence properties. Angew. Chem. Int. Ed. Engl. 54, 7181–7184 (2015).
Tsujimoto, H. et al. Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer. J. Am. Chem. Soc. 139, 4894–4900 (2017).
Okazaki, M. et al. Thermally activated delayed fluorescent phenothiazine-dibenzo[a,j]phenazine-phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chem. Sci. 8, 2677–2686 (2017).
Pashazadeh, R. et al. Multicolor luminescence switching and controllable thermally activated delayed fluorescence turn on/turn off in carbazole–quinoxaline–carbazole triads. J. Phys. Chem. Lett. 9, 1172–1177 (2018).
Zhao, C. et al. Thermally activated delayed fluorescence with dual-emission and pressure-induced bidirectional shifting: cooperative effects of intramolecular and intermolecular energy transfer. Chem. Sci. 14, 1089–1096 (2023).
Ishimatsu, R. et al. Electrogenerated chemiluminescence of donor-acceptor molecules with thermally activated delayed fluorescence. Angew. Chem. Int. Ed. Engl. 53, 6993–6996 (2014).
Etherington, M. K. et al. Persistent dimer emission in thermally activated delayed fluorescence materials. J. Phys. Chem. C 123, 11109–11117 (2019).
Li, J. et al. Luminogens based on cyano-substituted anthracene isomers: Different molecular packing and distinct piezochromic properties. Adv. Opt. Mater. 9, 2100813 (2021).
Nagura, K. et al. Distinct responses to mechanical grinding and hydrostatic pressure in luminescent chromism of tetrathiazolylthiophene. J. Am. Chem. Soc. 135, 10322–10325 (2013).
Lv, Y., Liu, Y., Ye, X., Liu, G. & Tao, X. The effect of mechano-stimuli on the amorphous-to-crystalline transition of mechanochromic luminescent materials. CrystEngComm 17, 526–531 (2015).
Li, Y. et al. Investigations on average fluorescence lifetimes for visualizing multi-exponential decays. Front. Phys. 8, 576862 (2020).
Engelborghs, A. S. Y. The correct use of “average” fluorescence parameters. Photochem. Photobiol. 67, 475–486 (1998).
Thor, W., Bünzli, J. C. G., Wong, K. L. & Tanner, P. A. Shedding light on luminescence lifetime measurement and associated data treatment. Adv. Photonics Res. 6, 2400081 (2024).
Eng, J. & Penfold, T. J. Open questions on the photophysics of thermally activated delayed fluorescence. Commun. Chem. 4, 91 (2021).
Noda, H., Nakanotani, H. & Adachi, C. Excited state engineering for efficient reverse intersystem crossing. Sci. Adv. 4, eaao6910 (2018).
Liu, J., Feng, R.-R., Zhou, L., Gai, F. & Zhang, W. Photoenhancement of the C≡N stretching vibration intensity of aromatic nitriles. J. Phys. Chem. Lett. 13, 9745–9751 (2022).
Gu, Y. et al. Pressure-induced emission enhancement of carbazole: The restriction of intramolecular vibration. J. Phys. Chem. Lett. 8, 4191–4196 (2017).
Wang, Y. et al. Pressure-engineered through-space conjugation for precise control of clusteroluminescence. Angew. Chem. Int. Ed. Engl. 64, e202420502 (2025).