World Malaria Report 2024: Addressing Inequity in the Global Malaria Response (World Health Organization, 2024).

Zhang, G. et al. Anopheles midgut FREP1 mediates Plasmodium invasion. J. Biol. Chem. 290, 16490–16501 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, J. et al. Genome-block expression-assisted association studies discover malaria resistance genes in Anopheles gambiae. Proc. Natl Acad. Sci. USA 110, 20675–20680 (2013).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Unwin, H. J. T., Sherrard-Smith, E., Churcher, T. S. & Ghani, A. C. Quantifying the direct and indirect protection provided by insecticide treated bed nets against malaria. Nat. Commun. 14, 676 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Wang, S. & Jacobs-Lorena, M. Genetic approaches to interfere with malaria transmission by vector mosquitoes. Trends Biotechnol. 31, 185–193 (2013).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dong, Y., Simões, M. L. & Dimopoulos, G. Versatile transgenic multistage effector-gene combinations for Plasmodium falciparum suppression in Anopheles. Sci. Adv. 6, eaay5898 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hoermann, A. et al. Gene drive mosquitoes can aid malaria elimination by retarding Plasmodium sporogonic development. Sci. Adv. 8, eabo1733 (2022).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Gantz, V. M. et al. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc. Natl Acad. Sci. USA 112, E6736–E6743 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

James, A. A. Gene drive systems in mosquitoes: rules of the road. Trends Parasitol. 21, 64–67 (2005).

CAS 
PubMed 

Google Scholar
 

Adolfi, A. et al. Efficient population modification gene-drive rescue system in the malaria mosquito Anopheles stephensi. Nat. Commun. 11, 5553 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Collins, F. H. et al. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. Science 234, 607–610 (1986).

ADS 
CAS 
PubMed 

Google Scholar
 

Simões, M. L., Dong, Y., Mlambo, G. & Dimopoulos, G. C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites. PLoS Biol. 20, e3001515 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Dong, Y., Simões, M. L., Marois, E. & Dimopoulos, G. CRISPR/Cas9-mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog. 14, e1006898 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Isaacs, A. T. et al. Engineered resistance to Plasmodium falciparum development in transgenic Anopheles stephensi. PLoS Pathog. 7, e1002017 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Niu, G. et al. Targeting mosquito FREP1 with a fungal metabolite blocks malaria transmission. Sci. Rep. 5, 14694 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Moreira, L. A. et al. Bee venom phospholipase inhibits malaria parasite development in transgenic mosquitoes. J. Biol. Chem. 277, 40839–40843 (2002).

CAS 
PubMed 

Google Scholar
 

Dong, Y. et al. Engineered anopheles immunity to Plasmodium infection. PLoS Pathog. 7, e1002458 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kang, S., Shields, A. R., Jupatanakul, N. & Dimopoulos, G. Suppressing dengue-2 infection by chemical inhibition of Aedes aegypti host factors. PLoS Negl. Trop. Dis. 8, e3084 (2014).

PubMed 
PubMed Central 

Google Scholar
 

Gantz, V. M. & Akbari, O. S. Gene editing technologies and applications for insects. Curr. Opin. Insect Sci. 28, 66–72 (2018).

PubMed 
PubMed Central 

Google Scholar
 

Osta, M. A., Christophides, G. K. & Kafatos, F. C. Effects of mosquito genes on Plasmodium development. Science 303, 2030–2032 (2004).

ADS 
CAS 
PubMed 

Google Scholar
 

Isaacs, A. T. et al. Transgenic Anopheles stephensi coexpressing single-chain antibodies resist Plasmodium falciparum development. Proc. Natl Acad. Sci. USA 109, E1922–E1930 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Carballar-Lejarazú, R. et al. Dual effector population modification gene-drive strains of the African malaria mosquitoes, Anopheles gambiae and Anopheles coluzzii. Proc. Natl Acad. Sci. USA 120, e2221118120 (2023).

PubMed 
PubMed Central 

Google Scholar
 

Dilani, P. V. D., Dassanayake, R. S., Tyagi, B. K. & Gunawardene, Y. I. N. S. The impact of transgenesis on mosquito fitness: a review. Front. Insect Sci. 2, 957570 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Marrelli, M. T., Moreira, C. K., Kelly, D., Alphey, L. & Jacobs-Lorena, M. Mosquito transgenesis: what is the fitness cost? Trends Parasitol. 22, 197–202 (2006).

PubMed 

Google Scholar
 

Abraham, E. G. et al. Driving midgut-specific expression and secretion of a foreign protein in transgenic mosquitoes with AgAper1 regulatory elements. Insect Mol. Biol. 14, 271–279 (2005).

CAS 
PubMed 

Google Scholar
 

Carballar-Lejarazú, R. et al. Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proc. Natl Acad. Sci. USA 117, 22805–22814 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Bennink, S., Kiesow, M. J. & Pradel, G. The development of malaria parasites in the mosquito midgut. Cell. Microbiol. 18, 905–918 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Dong, S., Dong, Y., Simões, M. L. & Dimopoulos, G. Mosquito transgenesis for malaria control. Trends Parasitol. 38, 54–66 (2022).

CAS 
PubMed 

Google Scholar
 

Dong, Y. et al. Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog. 2, e52 (2006).

PubMed 
PubMed Central 

Google Scholar
 

Dong, Y. & Dimopoulos, G. Anopheles fibrinogen-related proteins provide expanded pattern recognition capacity against bacteria and malaria parasites. J. Biol. Chem. 284, 9835–9844 (2009).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

CAS 
PubMed 

Google Scholar
 

Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bazzano, D., Lomonaco, S. & Wilson, T. E. Mapping yeast mitotic 5′ resection at base resolution reveals the sequence and positional dependence of nucleases in vivo. Nucleic Acids Res. 49, 12607–12621 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Cejka, P. & Symington, L. S. DNA end resection: mechanism and control. Annu. Rev. Genet. 55, 285–307 (2021).

CAS 
PubMed 

Google Scholar
 

Yannuzzi, I., Butler, M. A., Fernandez, J. & Larocque, J. R. The role of Drosophila CtIP in homology-directed repair of DNA double-strand breaks. Genes 12, 1430 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xi, Z., Das, S., Garver, L. & Dimopoulos, G. Protocol for Plasmodium falciparum infections in mosquitoes and infection phenotype determination. J. Vis. Exp. 5, 222 (2007).

Kanatani, S., Stiffler, D., Bousema, T., Yenokyan, G. & Sinnis, P. Revisiting the Plasmodium sporozoite inoculum and elucidating the efficiency with which malaria parasites progress through the mosquito. Nat. Commun. 15, 748 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Niu, G. et al. The fibrinogen-like domain of FREP1 protein is a broad-spectrum malaria transmission-blocking vaccine antigen. J. Biol. Chem. 292, 11960–11969 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Xu, X. et al. Active-genetic neutralizing elements for halting or deleting gene-drives. Mol. Cell 80, 246–262 (2020).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, G., Niu, G., Perez, L., Wang, X. & Li, J. Malaria transmission assisted by interaction between Plasmodium α-tubulin-1 and Anopheles FREP1 protein. Preprint at bioRxiv https://doi.org/10.1101/2019.12.16.878082.

Corby-Harris, V. et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes. PLoS Pathog. 6, e1001003 (2010).

PubMed 
PubMed Central 

Google Scholar
 

Guichard, A. et al. Efficient allelic-drive in Drosophila. Nat. Commun. 10, 1640 (2019).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Kaduskar, B. et al. Reversing insecticide resistance with allelic-drive in Drosophila melanogaster. Nat. Commun. 13, 291 (2022).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Bier, E. Gene drives gaining speed. Nat. Rev. Genet. 23, 5–22 (2022).

CAS 
PubMed 

Google Scholar
 

Gantz, V. M. & Bier, E. The mutagenic chain reaction: a method for converting heterozygous to homozygous mutations. Science 348, 442–444 (2015).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Z. et al. CopyCatchers are versatile active genetic elements that detect and quantify inter-homolog somatic gene conversion. Nat. Commun. 12, 2625 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Terradas, G. et al. Inherently confinable split-drive systems in Drosophila. Nat. Commun. 12, 1480 (2021).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Terradas, G., Bennett, J. B., Li, Z., Marshall, J. M. & Bier, E. Genetic conversion of a split-drive into a full-drive element. Nat. Commun. 14, 191 (2023).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

DiCarlo, J. E., Chavez, A., Dietz, S. L., Esvelt, K. M. & Church, G. M. Safeguarding CRISPR–Cas9 gene drives in yeast. Nat. Biotechnol. 33, 1250–1255 (2015).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hammond, A. et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).

CAS 
PubMed 

Google Scholar
 

Kyrou, K. et al. A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nat. Biotechnol. 36, 1062–1066 (2018).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Walter, M. & Verdin, E. Viral gene drive in herpesviruses. Nat. Commun. 11, 4884 (2020).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Valderrama, J. A., Kulkarni, S. S., Nizet, V. & Bier, E. A bacterial gene-drive system efficiently edits and inactivates a high copy number antibiotic resistance locus. Nat. Commun. 10, 5276 (2019).


Google Scholar
 

Auradkar, A., Corder, M. R., Marshall, M. J. & Bier, E. A self-eliminating allelic-drive reverses insecticide resistance in Drosophila leaving no transgene in the population. Nat. Commun. 15, 9961 (2024).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

López Del Amo, V. et al. A transcomplementing gene drive provides a flexible platform for laboratory investigation and potential field deployment. Nat. Commun. 11, 352 (2020).

ADS 
PubMed 
PubMed Central 

Google Scholar
 

Nash, A. et al. Integral gene drives for population replacement. Biol. Open 8, bio037762 (2018).

PubMed Central 

Google Scholar
 

Nash, A., Capriotti, P., Hoermann, A., Papathanos, P. A. & Windbichler, N. Intronic gRNAs for the construction of minimal gene drive systems. Front. Bioeng. Biotechnol. 10, 857460 (2022).

PubMed 
PubMed Central 

Google Scholar
 

Chakraborty, M. et al. Hidden features of the malaria vector mosquito, Anopheles stephensi, revealed by a high-quality reference genome. BMC Biol. 19, 28 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar
 

Li, Z. et al. Developmental progression of DNA double-strand break repair deciphered by a single-allele resolution mutation classifier. Nat. Commun. 15, 2629 (2024).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
Â