Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

Article 

Google Scholar
 

Kabir, M. M., Jim, J. R. & Istenes, Z. Terrain detection and segmentation for autonomous vehicle navigation: a state-of-the-art systematic review. Inf. Fusion 113, 102644 (2025).

Article 

Google Scholar
 

Woloshin, S., Patel, N. & Kesselheim, A. S. False negative tests for SARS-CoV-2 infection—challenges and implications. N. Engl. J. Med. 383, e38 (2020).

Article 

Google Scholar
 

Zhao, F., Zhang, C. & Geng, B. Deep multimodal data fusion. ACM Comput. Surv. 56, 216 (2024).

Article 

Google Scholar
 

Baltrušaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2019).

Article 

Google Scholar
 

Ektefaie, Y., Dasoulas, G., Noori, A., Farhat, M. & Zitnik, M. Multimodal learning with graphs. Nat. Mach. Intell. 5, 340–350 (2023).

Article 

Google Scholar
 

Xu, P., Zhu, X. & Clifton, D. A. Multimodal learning with transformers: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 45, 12113–12132 (2023).

Article 

Google Scholar
 

Liang, P. P., Zadeh, A. & Morency, L.-P. Foundations & trends in multimodal machine learning: principles, challenges, and open questions. ACM Comput. Surv. 56, 264 (2024).

Article 

Google Scholar
 

Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

Article 

Google Scholar
 

Kline, A. et al. Multimodal machine learning in precision health: a scoping review. npj Digit. Med. 5, 171 (2022).

Article 

Google Scholar
 

Krones, F., Marikkar, U., Parsons, G., Szmul, A. & Mahdi, A. Review of multimodal machine learning approaches in healthcare. Inf. Fusion 114, 102690 (2025).

Article 

Google Scholar
 

Notin, P., Rollins, N., Gal, Y., Sander, C. & Marks, D. Machine learning for functional protein design. Nat. Biotechnol. 42, 216–228 (2024).

Article 

Google Scholar
 

Song, B., Zhou, R. & Ahmed, F. Multi-modal machine learning in engineering design: a review and future directions. J. Comput. Inf. Sci. Eng. 24, 010801 (2024).

Article 

Google Scholar
 

Ofodile, O. C. et al. Predictive analytics in climate finance: assessing risks and opportunities for investors. GSC Adv. Res. Rev. 18, 423–433 (2024).

Article 

Google Scholar
 

Quatrini, S. Challenges and opportunities to scale up sustainable finance after the COVID-19 crisis: lessons and promising innovations from science and practice. Ecosyst. Serv. 48, 101240 (2021).

Article 

Google Scholar
 

Gupta, V. et al. An emotion care model using multimodal textual analysis on COVID-19. Chaos Solitons Fractals 144, 110708 (2021).

Article 

Google Scholar
 

Anshul, A., Pranav, G. S., Zia Ur Rehman, M. & Kumar, N. A multimodal framework for depression detection during COVID-19 via harvesting social media. IEEE Trans. Comput. Soc. Syst. 11, 2872–2888 (2024).

Bordes, F. et al. An introduction to vision–language modeling. Preprint at https://doi.org/10.48550/arXiv.2405.17247 (2024).

Zhang, J., Huang, J., Jin, S. & Lu, S. Vision–language models for vision tasks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 46, 5625–5644 (2024).

van Breugel, B. & van der Schaar, M. Position: why tabular foundation models should be a research priority. In Proc. 41st International Conference on Machine Learning (eds Salakhutdinov, R. et al.) 48976–48993 (PMLR, 2024).

Ma, M. et al. SMIL: multimodal learning with severely missing modality. In Proc. AAAI Conference on Artificial Intelligence Vol. 35, 2302–2310 (AAAI Press, 2021).

Wu, R., Wang, H., Chen, H.-T. & Carneiro, G. Deep multimodal learning with missing modality: a survey. Preprint at https://doi.org/10.48550/arXiv.2409.07825 (2024).

Wang, F., Zhou, Y., Wang, S., Vardhanabhuti, V. & Yu, L. Multi-granularity cross-modal alignment for generalized medical visual representation learning. Adv. Neural Inf. Process. Syst. 35, 33536–33549 (2022).


Google Scholar
 

Zhao, T., Zhang, L., Ma, Y. & Cheng, L. A survey on safe multi-modal learning systems. In Proc. 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 6655–6665 (Association for Computing Machinery, 2024).

Pranjal, R. et al. Toward privacy-enhancing ambulatory-based well-being monitoring: investigating user re-identification risk in multimodal data. In IEEE International Conference on Acoustics, Speech and Signal Processing 1–5 (IEEE, 2023).

Paleyes, A., Urma, R.-G. & Lawrence, N. D. Challenges in deploying machine learning: a survey of case studies. ACM Comput. Surv. 55, 114 (2022).


Google Scholar
 

Jo, A. The promise and peril of generative AI. Nature 614, 214–216 (2023).


Google Scholar
 

Brown, T. et al. Language models are few-shot learners. In Proc. 34th International Conference on Neural Information Processing Systems (eds Larochelle, H. et al.) 1877–1901 (Curran Associates Inc., 2020).

Achiam, J. et al. GPT-4 technical report. Preprint at https://doi.org/10.48550/arXiv.2303.08774 (2023).

Seedat, N., Imrie, F. & van der Schaar, M. Navigating data-centric artificial intelligence with DC-Check: advances, challenges, and opportunities. IEEE Trans. Artif. Intell. 5, 2589–2603 (2024).

Liu, H., Li, C., Wu, Q. & Lee, Y. J. Visual instruction tuning. In Proc. 37th International Conference on Neural Information Processing Systems (eds Oh, A. et al.) 34892–34916 (Curran Associates Inc., 2023).

Li, C. et al. LLaVA-med: training a large language-and-vision assistant for biomedicine in one day. In Proc. 37th International Conference on Neural Information Processing Systems (eds Oh, A. et al.) 28541–28564 (Curran Associates Inc., 2023).

Roberts, M. et al. Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat. Mach. Intell. 3, 199–217 (2021).

Article 

Google Scholar
 

Kreuzberger, D., Kühl, N. & Hirschl, S. Machine learning operations (MLOps): overview, definition, and architecture. IEEE Access 11, 31866–31879 (2023).

Article 

Google Scholar
 

Lavin, A. et al. Technology readiness levels for machine learning systems. Nat. Commun. 13, 6039 (2022).

Article 

Google Scholar
 

Nielsen, M. W. et al. Intersectional analysis for science and technology. Nature 640, 329–337 (2025).

Article 

Google Scholar
 

Lekadir, K. et al. FUTURE-AI: international consensus guideline for trustworthy and deployable artificial intelligence in healthcare. BMJ 388, e081554 (2025).

Huang, Y. et al. What makes multi-modal learning better than single (provably). In Proc. 35th International Conference on Neural Information Processing Systems (eds Ranzato, M. et al.) 10944–10956 (Curran Associates Inc., 2021).

Meng, X., Babaee, H. & Karniadakis, G. E. Multi-fidelity Bayesian neural networks: algorithms and applications. J. Comput. Phys. 438, 110361 (2021).

Article 
MathSciNet 

Google Scholar
 

Penwarden, M., Zhe, S., Narayan, A. & Kirby, R. M. Multifidelity modeling for physics-informed neural networks (PINNs). J. Comput. Phys. 451, 110844 (2022).

Article 
MathSciNet 

Google Scholar
 

Zitnik, M. et al. Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion 50, 71–91 (2019).

Article 

Google Scholar
 

Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 29, 1681–1691 (2023).

Wu, E. et al. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat. Med. 27, 582–584 (2021).

Article 

Google Scholar
 

van Breugel, B., Liu, T., Oglic, D. & van der Schaar, M. Synthetic data in biomedicine via generative artificial intelligence. Nat. Rev. Bioeng. 2, 991–1004 (2024).

Article 

Google Scholar
 

Al-Rubaie, M. & Chang, J. M. Privacy-preserving machine learning: threats and solutions. IEEE Secur. Priv. 17, 49–58 (2019).

Article 

Google Scholar
 

Wendland, P. et al. Generation of realistic synthetic data using multimodal neural ordinary differential equations. npj Digit. Med. 5, 122 (2022).

Article 

Google Scholar
 

Che, L., Wang, J., Zhou, Y. & Ma, F. Multimodal federated learning: a survey. Sensors 23, 6986 (2023).

Wang, Q., Zhan, L., Thompson, P. M. & Zhou, J. Multimodal learning with incomplete modalities by knowledge distillation. In Proc. 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining 1828–1838 (Association for Computing Machinery, 2020).

Yu, Z., Yu, J., Fan, J. & Tao, D. Multi-modal factorized bilinear pooling with co-attention learning for visual question answering. In Proc. IEEE International Conference on Computer Vision 1839–1848 (IEEE, 2017).

Weidinger, L. et al. Holistic safety and responsibility evaluations of advanced AI models. Preprint at https://doi.org/10.48550/arXiv.2404.14068 (2024).

Luccioni, S., Akiki, C., Mitchell, M. & Jernite, Y. Stable bias: evaluating societal representations in diffusion models. In Proc. 37th International Conference on Neural Information Processing Systems (eds Oh, A. et al.) 56338–56351 (Curran Associates Inc., 2023).

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl Acad. Sci. USA 116, 22071–22080 (2019).

Article 
MathSciNet 

Google Scholar
 

Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

Article 

Google Scholar
 

Gawlikowski, J. et al. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 56, 1513–1589 (2023).

Article 

Google Scholar
 

Khojasteh, D., Davani, E., Shamsipour, A., Haghani, M. & Glamore, W. Climate change and COVID-19: interdisciplinary perspectives from two global crises. Sci. Total Environ. 844, 157142 (2022).

Article 

Google Scholar
 

Elmer, T., Mepham, K. & Stadtfeld, C. Students under lockdown: comparisons of students’ social networks and mental health before and during the COVID-19 crisis in Switzerland. PLoS ONE 15, e0236337 (2020).

Article 

Google Scholar
 

Valdez, D., Ten Thij, M., Bathina, K., Rutter, L. A. & Bollen, J. Social media insights into US mental health during the COVID-19 pandemic: longitudinal analysis of Twitter data. J. Med. Internet Res. 22, e21418 (2020).

Article 

Google Scholar
 

Liu, Z. et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 11, 5172 (2020).

Article 

Google Scholar
 

Zheng, B. et al. Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Sci. Adv. 6, eabd4998 (2020).

Article 

Google Scholar
 

Mosser, P. C. Central bank responses to COVID-19. Bus. Econ. 55, 191–201 (2020).

Article 

Google Scholar
 

Nicola, M. et al. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int. J. Surg. 78, 185–193 (2020).

Article 

Google Scholar
 

Ding, X. et al. Wearable sensing and telehealth technology with potential applications in the coronavirus pandemic. IEEE Rev. Biomed. Eng. 14, 48–70 (2020).

Article 

Google Scholar
 

Charlton, P. H. et al. Wearable photoplethysmography for cardiovascular monitoring. Proc. IEEE 110, 355–381 (2022).

Article 

Google Scholar
 

Zong, Y., Mac Aodha, O. & Hospedales, T. Self-supervised multimodal learning: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 47, 5299-5318 (2025).

Yang, X., Zhang, T. & Xu, C. Cross-domain feature learning in multimedia. IEEE Trans. Multimed. 17, 64–78 (2014).

Article 

Google Scholar
 

Han, R. et al. Randomised controlled trials evaluating artificial intelligence in clinical practice: a scoping review. Lancet Digit. Health 6, e367–e373 (2024).

Article 

Google Scholar
 

Plana, D. et al. Randomized clinical trials of machine learning interventions in health care: a systematic review. JAMA Netw. Open 5, e2233946 (2022).

Article 

Google Scholar
 

Imrie, F., Davis, R. & van der Schaar, M. Multiple stakeholders drive diverse interpretability requirements for machine learning in healthcare. Nat. Mach. Intell. 5, 824–829 (2023).

Article 

Google Scholar
 

Mincu, D. & Roy, S. Developing robust benchmarks for driving forward AI innovation in healthcare. Nat. Mach. Intell. 4, 916–921 (2022).

Article 

Google Scholar
 

Soni, A. et al. in Machine Learning for Robotics Applications (eds Bianchini, M. et al.) 139–151 (Springer, 2021).

Badue, C. et al. Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021).

Article 

Google Scholar
 

Yeong, D. J., Velasco-Hernandez, G., Barry, J. & Walsh, J. Sensor and sensor fusion technology in autonomous vehicles: a review. Sensors 21, 2140 (2021).

Article 

Google Scholar
 

Yang, J. et al. Generalized predictive model for autonomous driving. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 14662–14672 (IEEE, 2024).

Zhang, W. & Xu, J. Advanced lightweight materials for automobiles: a review. Mater. Des. 221, 110994 (2022).

Article 

Google Scholar
 

Hansson, S. O., Belin, M.-Å. & Lundgren, B. Self-driving vehicles—an ethical overview. Philos. Technol. 34, 1383–1408 (2021).

Article 

Google Scholar
 

Chowdhury, A., Karmakar, G., Kamruzzaman, J., Jolfaei, A. & Das, R. Attacks on self-driving cars and their countermeasures: a survey. IEEE Access 8, 207308–207342 (2020).

Article 

Google Scholar
 

Dey, K. C., Mishra, A. & Chowdhury, M. Potential of intelligent transportation systems in mitigating adverse weather impacts on road mobility: a review. IEEE Trans. Intell. Transp. Syst. 16, 1107–1119 (2014).

Article 

Google Scholar
 

Kamran, S. S. et al. Artificial intelligence and advanced materials in automotive industry: potential applications and perspectives. Mater. Today Proc. 62, 4207–4214 (2022).

Article 

Google Scholar
 

Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

Article 
MathSciNet 

Google Scholar
 

Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

Article 

Google Scholar
 

Liu, P., Yang, R. & Xu, Z. Public acceptance of fully automated driving: effects of social trust and risk/benefit perceptions. Risk Anal. 39, 326–341 (2019).

Article 

Google Scholar
 

Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).

Article 

Google Scholar
 

Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).

Article 
MathSciNet 

Google Scholar
 

Mathiesen, K. Rating climate risks to credit worthiness. Nat. Clim. Change 8, 454–456 (2018).

Article 

Google Scholar
 

Breitenstein, M., Ciummo, S. & Walch, F. Disclosure of Climate Change Risk in Credit Ratings. Occasional Paper Series 303 (European Central Bank, 2022).

Imran, M., Ofli, F., Caragea, D. & Torralba, A. Using AI and social media multimodal content for disaster response and management: opportunities, challenges, and future directions. Inf. Process. Manag. 57, 102261 (2020).

Article 

Google Scholar
 

Tanir, T., Yildirim, E., Ferreira, C. M. & Demir, I. Social vulnerability and climate risk assessment for agricultural communities in the United States. Sci. Total Environ. 908, 168346 (2024).

Article 

Google Scholar
 

Kumar, P. et al. An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth Sci. Rev. 217, 103603 (2021).

Article 

Google Scholar
 

Tkachenko, N., Jarvis, S. & Procter, R. Predicting floods with Flickr tags. PLoS ONE 12, e0172870 (2017).

Article 

Google Scholar
 

Thulke, D. et al. ClimateGPT: towards AI synthesizing interdisciplinary research on climate change. Preprint at https://doi.org/10.48550/arXiv.2401.09646 (2024).

Bodnar, C. et al. Aurora: a Foundation Model of the Atmosphere. Technical Report MSR-TR-2024-16 (Microsoft Research AI for Science, 2024).

Rasp, S. et al. WeatherBench 2: a benchmark for the next generation of data-driven global weather models. J. Adv. Model. Earth Syst. 16, e2023MS004019 (2024).

Article 

Google Scholar
 

Morshed, S. R. et al. Decoding seasonal variability of air pollutants with climate factors: a geostatistical approach using multimodal regression models for informed climate change mitigation. Environ. Pollut. 345, 123463 (2024).

Article 

Google Scholar
 

Reichstein, M. et al. Early warning of complex climate risk with integrated artificial intelligence. Nat. Commun. 16, 2564 (2025).

Article 

Google Scholar
 

Liang, P. P. et al. MultiBench: multiscale benchmarks for multimodal representation learning. In Proc. 35th Conference on Neural Information Processing Systems Track on Datasets and Benchmarks (eds Vanschoren, J. & Yeung, S.) (2021)

de la Fuente, J. et al. Towards a more inductive world for drug repurposing approaches. Nat. Mach. Intell. 7, 495–508 (2025).

Torabi, F. et al. The common governance model: a way to avoid data segregation between existing trusted research environment. Int. J. Popul. Data Sci. 8, 2164 (2023).

Crosswell, L. C. & Thornton, J. M. ELIXIR: a distributed infrastructure for European biological data. Trends Biotechnol. 30, 241–242 (2012).

Article 

Google Scholar
 

Liang, K. et al. A survey of knowledge graph reasoning on graph types: static, dynamic, and multi-modal. IEEE Trans. Pattern Anal. Mach. Intell. 46, 9456–9478 (2024).

Archit, A. et al. Segment anything for microscopy. Nat. Methods 22, 579–591 (2025).

Li, C. et al. Multimodal foundation models: from specialists to general-purpose assistants. Found. Trends Comput. Graph. Vis. 16, 1–214 (2024).

Article 

Google Scholar
 

Fei, N. et al. Towards artificial general intelligence via a multimodal foundation model. Nat. Commun. 13, 3094 (2022).

Article 

Google Scholar
 

Narayanswamy, G. et al. Scaling wearable foundation models. In The Thirteenth International Conference on Learning Representations (ICLR, 2025).

Cui, H. et al. Towards multimodal foundation models in molecular cell biology. Nature 640, 623–633 (2025).

Article 

Google Scholar
 

Introducing the Model Context Protocol. Anthropic https://www.anthropic.com/index/model-context-protocol (2024).

Weisz, J. D. et al. Design principles for generative AI applications. In Proc. 2024 CHI Conference on Human Factors in Computing Systems (eds Mueller, F. F. et al.) 378 (Association for Computing Machinery, 2024).

Li, J., Li, D., Xiong, C. & Hoi, S. BLIP: Bootstrapping language–image pre-training for unified vision–language understanding and generation. In Proc. 39th International Conference on Machine Learning (eds Chaudhuri, K. et al.) 12888–12900 (PMLR, 2022).

Li, J., Li, D., Savarese, S. & Hoi, S. BLIP-2: Bootstrapping language–image pre-training with frozen image encoders and large language models. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 19730–19742 (PMLR, 2023).

Driess, D. et al. PaLM-E: an embodied multimodal language model. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 8469–8488 (PMLR, 2023).

Tan, Z. et al. Large language models for data annotation and synthesis: a survey. In Proc. 2024 Conference on Empirical Methods in Natural Language Processing (eds Al-Onaizan, Y. et al.) 930–957 (Association for Computational Linguistics, 2024).

Ding, B. et al. Data augmentation using LLMs: data perspectives, learning paradigms and challenges. In Findings of the Association for Computational Linguistics ACL 2024 (eds Ku, L.-W. et al.) 1679–1705 (Association for Computational Linguistics, 2024).

Chan, A.-W. et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat. Med. 26, 1364–1374 (2020).

Article 

Google Scholar
 

de Hond, A. A. H. et al. Guidelines and quality criteria for artificial intelligence-based prediction models in healthcare: a scoping review. npj Digit. Med. 5, 2 (2022).

Article 

Google Scholar
 

Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp. Oncol. 2015, 68–77 (2015).


Google Scholar
 

Johnson, A. E. W. et al. MIMIC-IV, a freely accessible electronic health record dataset. Sci. Data 10, 1 (2023).

Article 

Google Scholar
 

Tong, E., Zadeh, A., Jones, C. & Morency, L.-P. Combating human trafficking with multimodal deep models. In Proc. 55th Annual Meeting of the Association for Computational Linguistics (eds Barzilay, R. et al.) 1547–1556 (Association for Computational Linguistics, 2017).

Razi, A. et al. Instagram data donation: a case study on collecting ecologically valid social media data for the purpose of adolescent online risk detection. In CHI Conference on Human Factors in Computing Systems Extended Abstracts (eds Barbosa, S. et al.) 1–9 (Association for Computing Machinery, 2022).

Caesar, H. et al. nuScenes: a multimodal dataset for autonomous driving. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11621–11631 (IEEE, 2020).

Yu, H. et al. DAIR-V2X: a large-scale dataset for vehicle–infrastructure cooperative 3D object detection. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 21361–21370 (IEEE, 2022).

Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

Lu, P. et al. MathVista: Evaluating mathematical reasoning of foundation models in visual contexts. In International Conference on Learning Representations (ICLR, 2024).

iNaturalist contributors. iNaturalist research-grade observations. GBIF https://doi.org/10.15468/ab3s5x (2025).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

Article 

Google Scholar
 

Mathur, P. et al. Monopoly: financial prediction from monetary policy conference videos using multimodal cues. In Proc. 30th ACM International Conference on Multimedia 2276–2285 (Association for Computing Machinery, 2022).

Cheng, D., Yang, F., Xiang, S. & Liu, J. Financial time series forecasting with multi-modality graph neural network. Pattern Recognit. 121, 108218 (2022).

Article 

Google Scholar
 

Chen, K. et al. The operational medium-range deterministic weather forecasting can be extended beyond a 10-day lead time. Commun. Earth Environ. 6, 518 (2025).

Article 

Google Scholar
 

Jin, Q. et al. Spatiotemporal inference network for precipitation nowcasting with multimodal fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 17, 1299–1314 (2024).

Article 

Google Scholar
 

Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

Article 

Google Scholar
 

Johnson, A. E. W. et al. MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016).

Article 

Google Scholar