Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

Article 
ADS 

Google Scholar
 

Hudson, R. J. et al. A framework for multiexcitonic logic. Nat. Rev. Chem. 8, 1–16 (2024).

Article 

Google Scholar
 

Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

Article 
ADS 

Google Scholar
 

Feng, J. et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires. Sci. Adv. 7, eabj6627 (2021).

Article 
ADS 

Google Scholar
 

Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

Article 
ADS 

Google Scholar
 

Ghosh, S. et al. Microcavity exciton polaritons at room temperature. Photon. Insights 1, R04 (2022).

Article 

Google Scholar
 

Liu, X. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

Article 
ADS 

Google Scholar
 

Sun, Z. et al. Optical control of room-temperature valley polaritons. Nat. Photon. 11, 491–496 (2017).

Article 
ADS 

Google Scholar
 

Dufferwiel, S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photon. 11, 497–501 (2017).

Article 
ADS 

Google Scholar
 

Chen, Y.-J., Cain, J. D., Stanev, T. K., Dravid, V. P. & Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photon. 11, 431–435 (2017).

Article 
ADS 

Google Scholar
 

Dufferwiel, S. et al. Valley coherent exciton-polaritons in a monolayer semiconductor. Nat. Commun. 9, 4797 (2018).

Article 
ADS 

Google Scholar
 

Lundt, N. et al. Optical valley Hall effect for highly valley-coherent exciton-polaritons in an atomically thin semiconductor. Nat. Nanotechnol. 14, 770–775 (2019).

Article 
ADS 

Google Scholar
 

LaMountain, T. et al. Valley-selective optical Stark effect of exciton-polaritons in a monolayer semiconductor. Nat. Commun. 12, 4530 (2021).

Article 
ADS 

Google Scholar
 

Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).


Google Scholar
 

Emmanuele, R. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

Article 
ADS 

Google Scholar
 

Gu, J. et al. Enhanced nonlinear interaction of polaritons via excitonic Rydberg states in monolayer WSe2. Nat. Commun. 12, 2269 (2021).

Article 
ADS 

Google Scholar
 

Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021).

Article 
ADS 

Google Scholar
 

Espinosa-Ortega, T. & Liew, T. C. H. Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities. Phys. Rev. B 87, 195305 (2013).

Article 
ADS 

Google Scholar
 

Banerjee, R. & Liew, T. C. H. Artificial life in an exciton-polariton lattice. New J. Phys. 22, 103062 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Król, M. et al. Giant spin Meissner effect in a nonequilibrium exciton-polariton gas. Phys. Rev. B 99, 115318 (2019).

Article 
ADS 

Google Scholar
 

Sigurdsson, H. et al. Persistent self-induced Larmor precession evidenced through periodic revivals of coherence. Phys. Rev. Lett. 129, 155301 (2022).

Article 
ADS 

Google Scholar
 

Cerna, R. et al. Ultrafast tristable spin memory of a coherent polariton gas. Nat. Commun. 4, 2008 (2013).

Article 
ADS 

Google Scholar
 

Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

Article 
ADS 

Google Scholar
 

Liu, T. Y. et al. Dynamics of spin-dependent polariton–polariton interactions in two-dimensional layered halide organic perovskite microcavities. Laser Photon. Rev. 16, 2200176 (2022).

Article 
ADS 

Google Scholar
 

Fieramosca, A. et al. Origin of exciton–polariton interactions and decoupled dark states dynamics in 2D hybrid perovskite quantum wells. Nano Lett. 24, 8240 (2024).

Article 
ADS 

Google Scholar
 

Zhao, J. et al. Room temperature polariton spin switches based on van der Waals superlattices. Nat. Commun. 15, 7601 (2024).

Article 
ADS 

Google Scholar
 

Zhao, J. et al. Exciton polariton interactions in van der Waals superlattices at room temperature. Nat. Commun. 14, 1512 (2023).

Article 
ADS 

Google Scholar
 

Hu, Z. et al. Energy transfer driven brightening of MoS2 by ultrafast polariton relaxation in microcavity MoS2/hBN/WS2 heterostructures. Nat. Commun. 15, 1747 (2024).

Article 
ADS 

Google Scholar
 

Shelykh, I. A., Kavokin, A. V., Rubo, Y. G., Liew, T. & Malpuech, G. Polariton polarization-sensitive phenomena in planar semiconductor microcavities. Semicond. Sci. Technol. 25, 013001 (2009).

Article 
ADS 

Google Scholar
 

Vladimirova, M. et al. Polarization controlled nonlinear transmission of light through semiconductor microcavities. Phys. Rev. B 79, 115325 (2009).

Article 
ADS 

Google Scholar
 

Vladimirova, M. et al. Polariton-polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).

Article 
ADS 

Google Scholar
 

Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nat. Phys. 10, 500–504 (2014).

Article 

Google Scholar
 

Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

Article 
ADS 

Google Scholar
 

Fernandez, H. A., Withers, F., Russo, S. & Barnes, W. L. Electrically tuneable exciton-polaritons through free electron doping in monolayer WS2 microcavities. Adv. Opt. Mater. 7, 1900484 (2019).

Article 

Google Scholar
 

Tan, L. B. et al. Bose polaron interactions in a cavity-coupled monolayer semiconductor. Phys. Rev. X 13, 031036 (2023).


Google Scholar
 

Stepanov, P. et al. Exciton-exciton interaction beyond the hydrogenic picture in a MoSe2 monolayer in the strong light-matter coupling regime. Phys. Rev. Lett. 126, 167401 (2021).

Article 
ADS 

Google Scholar
 

Choo, K., Bleu, O., Levinsen, J. & Parish, M. M. Polaronic polariton quasiparticles in a dark excitonic medium. Phys. Rev. B 109, 195432 (2024).

Article 
ADS 

Google Scholar
 

Sercombe, D. et al. Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013).

Article 
ADS 

Google Scholar
 

Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019).

Article 
ADS 

Google Scholar
 

Bastarrachea-Magnani, M. A., Camacho-Guardian, A. & Bruun, G. M. Attractive and repulsive exciton-polariton interactions mediated by an electron gas. Phys. Rev. Lett. 126, 127405 (2021).

Article 
ADS 

Google Scholar
 

Zhumagulov, Y. V. et al. Microscopic theory of exciton and trion polaritons in doped monolayers of transition metal dichalcogenides. npj Comput. Mater. 8, 92 (2022).

Article 
ADS 

Google Scholar
 

Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).

Article 
ADS 

Google Scholar
 

Masharin, M. A. et al. Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites. ACS Photon. 10, 691–698 (2023).

Article 

Google Scholar
 

Kaasbjerg, K., Thygesen, K. S. & Jacobsen, K. W. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85, 115317 (2012).

Article 
ADS 

Google Scholar
 

Yu, S. et al. Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems. J. Appl. Phys. 82, 3363–3367 (1997).

Article 
ADS 

Google Scholar
 

Liu, X. et al. Nonlinear valley phonon scattering under the strong coupling regime. Nat. Mater. 20, 1210–1215 (2021).

Article 
ADS 

Google Scholar
 

Mori, N. & Ando, T. Electron–optical-phonon interaction in single and double heterostructures. Phys. Rev. B 40, 6175–6188 (1989).

Article 
ADS 

Google Scholar
 

Miller, B. et al. Tuning the Fröhlich exciton–phonon scattering in monolayer MoS2. Nat. Commun. 10, 807 (2019).

Article 
ADS 

Google Scholar
 

Sie, E. J. et al. Observation of exciton redshift–blueshift crossover in monolayer WS2. Nano. Lett. 17, 4210–4216 (2017).

Article 
ADS 

Google Scholar
 

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

Article 

Google Scholar
 

Gunde, M. K. Vibrational modes in amorphous silicon dioxide. Phys. B 292, 286–295 (2000).

Article 
ADS 

Google Scholar
 

Zhao, W. et al. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5, 9677–9683 (2013).

Article 
ADS 

Google Scholar
 

Zhao, J. et al. Room temperature spin-layer locking of exciton-polariton nonlinearities. figshare https://doi.org/10.6084/m9.figshare.29974651 (2025).