Shilo, S. et al. 10 K: a large-scale prospective longitudinal study in Israel. Eur. J. Epidemiol. 36, 1187–1194 (2021).

Article 
PubMed 

Google Scholar
 

Reicher, L. et al. Deep phenotyping of health–disease continuum in the Human Phenotype Project. Nat. Med. 31, 3191–3203 (2025).

Article 
PubMed 

Google Scholar
 

Nathan, D. M. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329, 977–986 (1993).

Article 
PubMed 

Google Scholar
 

King, P., Peacock, I. & Donnelly, R. The UK prospective diabetes study (UKPDS): clinical and therapeutic implications for type 2 diabetes. Br. J. Clin. Pharmacol. 48, 643–648 (1999).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Gude, F. et al. Glycemic variability and its association with demographics and lifestyles in a general adult population. J. Diabetes Sci. Technol. 11, 780–790 (2017).

Article 
PubMed 

Google Scholar
 

Saab, K. et al. Capabilities of Gemini models in medicine. Preprint at https://doi.org/10.48550/arxiv.2404.18416 (2024).

Zhou, Y. et al. A foundation model for generalizable disease detection from retinal images. Nature 622, 156–163 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Lutsker, G., Rossman, H., Godiva, N. & Segal, E. COMPRER: a multimodal multi-objective pretraining framework for enhanced medical image representation. Preprint at https://doi.org/10.48550/arxiv.2403.09672 (2024).

Yuan, H. et al. Self-supervised learning for human activity recognition using 700,000 person-days of wearable data. npj Digit. Med. 7, 91 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Thapa, R. et al. SleepFM: multi-modal representation learning for sleep across brain activity, ECG and respiratory signals. Proc. Mach. Learn. Res. 235, 48019–48037 (2024).

Chen, R. J. et al. Towards a general-purpose foundation model for computational pathology. Nat. Med. 30, 850–862 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Krishnan, R., Rajpurkar, P. & Topol, E. J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 6, 1346–1352 (2022).

Article 
PubMed 

Google Scholar
 

GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 402, 203–234 (2023).

Article 

Google Scholar
 

Rawshani, A. et al. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 376, 1407–1418 (2017).

Article 
PubMed 

Google Scholar
 

Moser, E. G., Crew, L. B. & Garg, S. K. Role of continuous glucose monitoring in diabetes management. Av. Diabetol. 26, 73–78 (2010).

Article 

Google Scholar
 

Battelino, T. et al. Continuous glucose monitoring and metrics for clinical trials: an international consensus statement. Lancet Diabetes Endocrinol. 11, 42–57 (2023).

Article 
PubMed 

Google Scholar
 

Kieu, A., King, J., Govender, R. D. & Östlundh, L. The benefits of utilizing continuous glucose monitoring of diabetes mellitus in primary care: a systematic review. J. Diabetes Sci. Technol. 17, 762–774 (2023).

Article 
PubMed 

Google Scholar
 

Holzer, R., Bloch, W. & Brinkmann, C. Continuous glucose monitoring in healthy adults-possible applications in health care, wellness, and sports. Sensors 22, 2030 (2022).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Zahedani, A. D. et al. Digital health application integrating wearable data and behavioral patterns improves metabolic health. npj Digit. Med. 6, 216 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Shilo, S. et al. Continuous glucose monitoring and intrapersonal variability in fasting glucose. Nat. Med. 30, 1424–1431 (2024).

Article 
PubMed 

Google Scholar
 

U.S. Food & Drug Administration. FDA clears first over-the-counter continuous glucose monitor. FDA https://www.fda.gov/news-events/press-announcements/fda-clears-first-over-counter-continuous-glucose-monitor (2024).

McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://doi.org/10.48550/arxiv.1802.03426 (2018).

Bergenstal, R. M. et al. Glucose management indicator (GMI): a new term for estimating A1C from continuous glucose monitoring. Diabetes Care 41, 2275–2280 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Broll, S. et al. Interpreting blood GLUcose data with R package iglu. PLoS ONE 16, e0248560 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rodbard, D. New and improved methods to characterize glycemic variability using continuous glucose monitoring. Diabetes Technol. Ther. 11, 551–565 (2009).

Article 
PubMed 

Google Scholar
 

Wang, J. et al. Self-improving generative foundation model for synthetic medical image generation and clinical applications. Nat. Med. 31, 609–617 (2025).

Article 
PubMed 

Google Scholar
 

Keshet, A. et al. CGMap: characterizing continuous glucose monitor data in thousands of non-diabetic individuals. Cell Metab. 35, 758–769 (2023).

Article 
PubMed 

Google Scholar
 

Vickers, A. J., Van Calster, B. & Steyerberg, E. W. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests. BMJ 352, i6 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Van Calster, B. et al. Performance evaluation of predictive AI models to support medical decisions: overview and guidance. Preprint at https://doi.org/10.48550/arxiv.2412.10288 (2024).

Htet, T. D. et al. Rationale and design of a randomised controlled trial testing the effect of personalised diet in individuals with pre-diabetes or type 2 diabetes mellitus treated with metformin. BMJ Open 10, e037859 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Rein, M. S. et al. BREAst Cancer Personalised NuTrition (BREACPNT): dietary intervention in breast cancer survivors treated with endocrine therapy—a protocol for a randomised clinical trial. BMJ Open 12, e062498 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ben-Yacov, O. et al. Personalized postprandial glucose response-targeting diet versus Mediterranean diet for glycemic control in prediabetes. Diabetes Care 44, 1980–1991 (2021).

Article 
PubMed 

Google Scholar
 

The Diabetes Prevention Program Research Group. The Diabetes Prevention Program. Design and methods for a clinical trial in the prevention of type 2 diabetes. Diabetes Care 22, 623–634 (1999).

Article 

Google Scholar
 

International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).

Article 

Google Scholar
 

Cersosimo, E., Solis-Herrera, C., Trautmann, M. E., Malloy, J. & Triplitt, C. L. Assessment of pancreatic β-cell function: review of methods and clinical applications. Curr. Diabetes Rev. 10, 2–42 (2014).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Abdul-Ghani, M. A. et al. The relationship between fasting hyperglycemia and insulin secretion in subjects with normal or impaired glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 295, E401–E406 (2008).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ansari, A. F. et al. Chronos: learning the language of time series. Transact. Mach. Learn. Res. https://openreview.net/forum?id=gerNCVqqtR (2024).

Rabanser, S., Januschowski, T., Flunkert, V., Salinas, D. & Gasthaus, J. The effectiveness of discretization in forecasting: an empirical study on neural time series models. Preprint at https://doi.org/10.48550/arxiv.2005.10111 (2020).

van den Oord, A. et al. WaveNet: a generative model for raw audio. In Proc. 9th ISCA Speech Synthesis Workshop 125 (2016).

van den Oord, A., Kalchbrenner, N. & Kavukcuoglu, K. Pixel recurrent neural networks. In Proc. 33rd International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) 1747–1756 (2016).

Danne, T. et al. International consensus on use of continuous glucose monitoring. Diabetes Care 40, 1631–1640 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Cefalu, W. T. et al. A global initiative to deliver precision health in diabetes. Nat. Med. 30, 1819–1822 (2024).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Ahlqvist, E., Prasad, R. B. & Groop, L. Subtypes of type 2 diabetes determined from clinical parameters. Diabetes 69, 2086–2093 (2020).

Article 
PubMed 

Google Scholar
 

Xiong, Z. et al. How generalizable are foundation models when applied to different demographic groups and settings? NEJM AI https://doi.org/10.1056/AIcs2400497 (2024).

Vaswani, A. et al. Attention is all you need. In Adv. Neural Information Processing Systems (eds Guyon, I. et al.) 30, 5998–6008 (2017).

Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In Proc. 7th International Conference on Learning Representations https://openreview.net/forum?id=Bkg6RiCqY7 (2019).

Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning of visual representations. In Proc. 37th International Conference on Machine Learning (eds Daumé, H. D. III & Singh, A.) 119, 1597–1607 (2020).

He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum contrast for unsupervised visual representation learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 9729–9738 (2020).

Radford, A. et al. Learning transferable visual models from natural language supervision. In Proc. 38th International Conference on Machine Learning (eds. Meila, M. & Zhang, T.) 139, 8748–8763 (2021).

Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (eds. Burstein, J. et al.) Vol. 1 (Long and Short Papers), 4171–4186 (2019).

Yuan, H. et al. Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality. npj Digit. Med. 7, 86 (2024).