Flebus, B. et al. The 2024 magnonics roadmap. J. Phys. Condens. Matter 36, 363501 (2024).

Article 

Google Scholar
 

Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114–1135 (2021).

Article 
ADS 

Google Scholar
 

Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnon transistor for all-magnon data processing. Nat. Commun. 5, 4700 (2014).

Article 
ADS 

Google Scholar
 

Mahmoud, A. et al. Introduction to spin wave computing. J. Appl. Phys. 128, 161101 (2020).

Article 
ADS 

Google Scholar
 

Wang, Q. et al. A magnonic directional coupler for integrated magnonic half-adders. Nat. Electron. 3, 765–774 (2020).

Article 

Google Scholar
 

Körber, L. et al. Pattern recognition in reciprocal space with a magnon-scattering reservoir. Nat. Commun. 14, 3954 (2023).

Article 
ADS 

Google Scholar
 

Wang, C. et al. Enhancement of magnonic frequency combs by exceptional points. Nat. Phys. 20, 1139–1144 (2024).

Article 

Google Scholar
 

Chumak, A. V. et al. Advances in magnetics roadmap on spin-wave computing. IEEE Trans. Magn. 58, 0800172 (2022).

Article 

Google Scholar
 

Girardi, D. et al. Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet. Nat. Commun. 15, 3057 (2024).

Article 
ADS 

Google Scholar
 

Wintz, S. et al. Magnetic vortex cores as tunable spin-wave emitters. Nat. Nanotechnol. 11, 948–953 (2016).

Article 
ADS 

Google Scholar
 

Yu, H. et al. Approaching soft X-ray wavelengths in nanomagnet-based microwave technology. Nat. Commun. 7, 11255 (2016).

Article 
ADS 

Google Scholar
 

Wang, H. et al. Reconfigurable nonreciprocal excitation of propagating exchange spin waves in perpendicularly magnetized yttrium iron garnet thin films. Phys. Rev. B 108, 134403 (2023).

Article 
ADS 

Google Scholar
 

Liu, C. et al. Long-distance propagation of short-wavelength spin waves. Nat. Commun. 9, 738 (2018).

Article 
ADS 

Google Scholar
 

Talapatra, A. et al. Imaging of short-wavelength spin waves in a nanometer-thick YIG/Co bilayer. Appl. Phys. Lett. 122, 202404 (2023).

Wang, Q. et al. Deeply nonlinear excitation of self-normalized short spin waves. Sci. Adv. 9, eadg4609 (2023).

Article 

Google Scholar
 

Nikolaev, K., Mohapatra, B. D., Schmidt, G., Demokritov, S. & Demidov, V. Spatially extended nonlinear generation of short-wavelength spin waves in yttrium iron garnet nanowaveguides. Phys. Rev. Appl. 22, 044083 (2024).

Article 
ADS 

Google Scholar
 

Ginzburg, V. L. Radiation by uniformly moving sources (Vavilov-Cherenkov effect, transition radiation, and other phenomena). Phys. Usp. 39, 973–982 (1996).

Article 
ADS 

Google Scholar
 

Čerenkov, P. A. Visible radiation produced by electrons moving in a medium with velocities exceeding that of light. Phys. Rev. 52, 378–379 (1937).

Article 
ADS 

Google Scholar
 

Liu, F. et al. Integrated Cherenkov radiation emitter eliminating the electron velocity threshold. Nat. Photon. 11, 289–292 (2017).

Article 
ADS 

Google Scholar
 

Datta, T. Cherenkov magnon excitations by a sub-relativistic magnetic monopole. Phys. Lett. A 103, 243–246 (1984).

Article 
ADS 

Google Scholar
 

Vorob’ev, P. V. & Kolokolov, I. V. Cherenkov emission of magnons by a slow monopole. JETP Lett. 67, 910 (1998).

Article 
ADS 

Google Scholar
 

Kaminer, I. et al. Efficient plasmonic emission by the quantum ÄŒerenkov effect from hot carriers in graphene. Nat. Commun. 7, ncomms11880 (2016).

Article 
ADS 

Google Scholar
 

Pogue, B. W. et al. Maps of in vivo oxygen pressure with submillimetre resolution and nanomolar sensitivity enabled by Cherenkov-excited luminescence scanned imaging. Nat. Biomed. Eng. 2, 254–264 (2018).

Article 

Google Scholar
 

Yan, M., Kákay, A., Andreas, C. & Hertel, R. Spin-Cherenkov effect and magnonic Mach cones. Phys. Rev. B 88, 220412 (2013).

Article 
ADS 

Google Scholar
 

Khokhlov, N., Filatov, I. & Kalashnikova, A. Spatial asymmetry of optically excited spin waves in anisotropic ferromagnetic film. J. Magn. Magn. Mater. 589, 171514 (2024).

Article 

Google Scholar
 

Satoh, T. et al. Directional control of spin-wave emission by spatially shaped light. Nat. Photon. 6, 662–666 (2012).

Article 
ADS 

Google Scholar
 

Dobrovolskiy, O. V. et al. Moving Abrikosov vortex lattices generate sub-40-nm magnons. Nat. Nanotechnol. https://doi.org/10.1038/s41565-025-02024-w (2025).

Yan, M. et al. Fast domain wall dynamics in magnetic nanotubes: suppression of Walker breakdown and Cherenkov-like spin wave emission. Appl. Phys. Lett. 99, 122505 (2011).

Hertel, R. Ultrafast domain wall dynamics in magnetic nanotubes and nanowires. J. Phys. Condens. Matter 28, 483002 (2016).

Article 

Google Scholar
 

Kimel, A. V., Kalashnikova, A. M., Pogrebna, A. & Zvezdin, A. K. Fundamentals and perspectives of ultrafast photoferroic recording. Phys. Rep. 852, 1–46 (2020).

Article 
ADS 

Google Scholar
 

Matsuda, O., Larciprete, M. C., Voti, R. L. & Wright, O. B. Fundamentals of picosecond laser ultrasonics. Ultrasonics 56, 3–20 (2015).

Article 

Google Scholar
 

Hioki, T., Hashimoto, Y. & Saitoh, E. Coherent oscillation between phonons and magnons. Commun. Phys. 5, 115 (2022).

Article 

Google Scholar
 

Kitaeva, V. F., Zharikov, E. V. & Chistyi, I. L. The properties of crystals with garnet structure. Phys. Status Solidi A 92, 475–488 (1985).

Article 
ADS 

Google Scholar
 

Scherbakov, A. V. et al. Coherent magnetization precession in ferromagnetic (Ga,Mn)As induced by picosecond acoustic pulses. Phys. Rev. Lett. 105, 117204 (2010).

Article 
ADS 

Google Scholar
 

Deb, M. et al. Femtosecond laser-excitation-driven high frequency standing spin waves in nanoscale dielectric thin films of iron garnets. Phys. Rev. Lett. 123, 027202 (2019).

Article 
ADS 

Google Scholar
 

Shelukhin, L. A. et al. Ultrafast laser-induced changes of the magnetic anisotropy in a low-symmetry iron garnet film. Phys. Rev. B 97, 014422 (2018).

Article 
ADS 

Google Scholar
 

Gurevich, A. & Melkov, G. Magnetization Oscillations and Waves (CRC Press, 1996).


Google Scholar
 

Kats, V. N. et al. Ultrafast changes of magnetic anisotropy driven by laser-generated coherent and noncoherent phonons in metallic films. Phys. Rev. B 93, 214422 (2016).

Article 
ADS 

Google Scholar
 

Wojtowicz, P. J. High temperature susceptibility of garnets: exchange interactions in YIG and LuIG. J. Appl. Phys. 33, 1257–1258 (1962).

Article 
ADS 

Google Scholar
 

Zeuschner, S. P. et al. Standing spin wave excitation in Bi:YIG films via temperature-induced anisotropy changes and magneto-elastic coupling. Phys. Rev. B 106, 134401 (2022).

Article 
ADS 

Google Scholar
 

Azovtsev, A. V. & Pertsev, N. A. Antiferromagnetic standing spin waves generated in NiO thin films by short strain pulses. Phys. Rev. B 110, 144430 (2024).

Article 
ADS 

Google Scholar
 

Akyol, M. et al. Structural, magnetic and optical properties of Au/YIG, YIG/Au and Au/YIG/Au multilayer thin film stacks. J. Magn. Magn. Mater. 493, 165704 (2020).

Article 

Google Scholar
 

Dongquoc, V. et al. Extraordinary enhancement of magneto-optical Faraday rotation angle in Bi-YIG/Pt/glass prepared by metal organic decomposition method. Surf. Interfaces 51, 104652 (2024).

Article 

Google Scholar
 

Gerevenkov, P. I. et al. Three regimes of a picosecond magnetoacoustics in ferromagnetic structures. Preprint at https://arxiv.org/abs/2505.09579 (2025).

Zeuschner, S. P. et al. Tracking picosecond strain pulses in heterostructures that exhibit giant magnetostriction. Struct. Dyn. 6, 024302 (2019).

Yaremkevich, D. D. et al. On-chip phonon-magnon reservoir for neuromorphic computing. Nat. Commun. 14, 8296 (2023).

Article 
ADS 

Google Scholar
 

Matsumoto, K. et al. Observation of evanescent spin waves in the magnetic dipole regime. Phys. Rev. B 101, 184407 (2020).

Philippe, G., Moalic, M. & Kłos, J. W. Unidirectional spin wave emission by traveling pair of magnetic field profiles. J. Magn. Magn. Mater. 587, 171359 (2023).

Article 

Google Scholar
 

Chumak, A. V., Serga, A. A. & Hillebrands, B. Magnonic crystals for data processing. J. Phys. D 50, 244001 (2017).

Article 
ADS 

Google Scholar
 

Liao, L., Liu, J., Puebla, J., Shao, Q. & Otani, Y. Hybrid magnon-phonon crystals. npj Spintron. 2, 47 (2024).

Article 

Google Scholar
 

Luo, C., Ibanescu, M., Johnson, S. G. & Joannopoulos, J. D. Cerenkov radiation in photonic crystals. Science 299, 368–371 (2003).

Article 
ADS 

Google Scholar
 

van Capel, P., Péronne, E. & Dijkhuis, J. Nonlinear ultrafast acoustics at the nano scale. Ultrasonics 56, 36–51 (2015).

Article 

Google Scholar
 

Zhuang, S., Meisenheimer, P. B., Heron, J. & Hu, J.-M. A narrowband spintronic terahertz emitter based on magnetoelastic heterostructures. ACS Appl. Mater. Interfaces 13, 48997–49006 (2021).

Article 

Google Scholar
 

Doormann, V., Krumme, J. P., Klages, C. P. & Erman, M. Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths. Appl. Phys. A 34, 223–230 (1984).

Article 
ADS 

Google Scholar
 

Hortensius, J. R. et al. Coherent spin-wave transport in an antiferromagnet. Nat. Phys. 17, 1001–1006 (2021).

Article 

Google Scholar
 

Clark, A. E., DeSavage, B., Coleman, W., Callen, E. R. & Callen, H. B. Saturation magnetostriction of single-crystal YIG. J. Appl. Phys. 34, 1296–1297 (1963).

Article 
ADS 

Google Scholar
 

Kamra, A., Keshtgar, H., Yan, P. & Bauer, G. E. W. Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015).

Article 
ADS 

Google Scholar
 

Azovtsev, A. V. & Pertsev, N. A. Magnetization dynamics and spin pumping induced by standing elastic waves. Phys. Rev. B 94, 184401 (2016).

Article 
ADS 

Google Scholar
 

Ruello, P. & Gusev, V. E. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ultrasonics 56, 21–35 (2015).

Article 

Google Scholar
 

Filatov, I. A. et al. Magnon-Cherenkov effect from a picosecond strain pulse. figshare https://doi.org/10.6084/m9.figshare.28351496 (2025).