Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D: Appl. Phys. 43, 264002 (2010).

Article 
ADS 

Google Scholar
 

Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

Article 

Google Scholar
 

Pirro, P., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Advances in coherent magnonics. Nat. Rev. Mater. 6, 1114 (2021).

Article 
ADS 

Google Scholar
 

Flebus, B. et al. The 2024 magnonics roadmap. J. Phys.: Condens. Matter 36, 363501 (2024).


Google Scholar
 

Wang, Q., Csaba, G., Verba, R., Chumak, A. V. & Pirro, P. Nanoscale magnonic networks. Phys. Rev. Appl. 21, 040503 (2024).

Article 
ADS 

Google Scholar
 

Uchida, M., Onose, Y., Matsui, Y. & Tokura, Y. Real-space observation of helical spin order. Science 311, 359–361 (2006).

Article 
ADS 

Google Scholar
 

Onose, Y., Okamura, Y., Seki, S., Ishiwata, S. & Tokura, Y. Observation of magnetic excitations of skyrmion crystal in a helimagnetic insulator Cu2OSeO3. Phys. Rev. Lett. 109, 037603 (2012).

Article 
ADS 

Google Scholar
 

Koralek, J. D. et al. Observation of coherent helimagnons and Gilbert damping in an itinerant magnet. Phys. Rev. Lett. 109, 247204 (2012).

Article 
ADS 

Google Scholar
 

Schwarze, T. et al. Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets. Nat. Mater. 14, 478–483 (2015).

Article 
ADS 

Google Scholar
 

Garst, M., Waizner, J. & Grundler, D. Collective spin excitations of helices and magnetic skyrmions: review and perspectives of magnonics in non-centrosymmetric magnets. J. Phys. D: Appl. Phys. 50, 293002 (2017).

Article 

Google Scholar
 

Kugler, M. et al. Band structure of helimagnons in MnSi resolved by inelastic neutron scattering. Phys. Rev. Lett. 115, 097203 (2015).

Article 
ADS 

Google Scholar
 

Weiler, M. et al. Helimagnon resonances in an intrinsic chiral magnonic crystal. Phys. Rev. Lett. 119, 237204 (2017).

Article 
ADS 

Google Scholar
 

Weber, T. et al. Topological magnon band structure of emergent Landau levels in a skyrmion lattice. Science 375, 1025–1030 (2022).

Article 
ADS 

Google Scholar
 

Shimamoto, Y. et al. Observation of collective resonance modes in a chiral spin soliton lattice with tunable magnon dispersion. Phys. Rev. Lett. 128, 247203 (2022).

Article 
ADS 

Google Scholar
 

Okamura, Y. et al. Microwave magnetoelectric effect via skyrmion resonance modes in a helimagnetic multiferroic. Nat. Commun. 4, 2391 (2013).

Article 
ADS 

Google Scholar
 

Nomura, T. et al. Phonon magnetochiral effect. Phys. Rev. Lett. 122, 145901 (2019).

Article 
ADS 

Google Scholar
 

Ogawa, N. et al. Nonreciprocity of spin waves in the conical helix state. Proc. Natl Acad. Sci. USA 118, e2022927118 (2021).

Article 

Google Scholar
 

Nomura, T. et al. Nonreciprocal phonon propagation in a metallic chiral magnet. Phys. Rev. Lett. 130, 176301 (2023).

Article 
ADS 

Google Scholar
 

del Ser, N., Heinen, L. & Rosch, A. Archimedean screw in driven chiral magnets. SciPost Phys. 11, 009 (2021).

Article 
ADS 
MathSciNet 

Google Scholar
 

Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

Article 
ADS 

Google Scholar
 

Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106–109 (2011).

Article 
ADS 

Google Scholar
 

Seki, S., Yu, X. Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336, 198–201 (2012).

Article 
ADS 

Google Scholar
 

Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

Article 
ADS 

Google Scholar
 

Date, M., Okuda, K. & Kadowaki, K. Electron spin resonance in the itinerant-electron helical magnet MnSi. J. Phys. Soc. Jpn. 42, 1555–1561 (1977).

Kataoka, M. Spin waves in systems with long period helical spin density waves due to the antisymmetric and symmetric exchange interactions. J. Phys. Soc. Jpn. 56, 3635–3647 (1987).

Belitz, D., Kirkpatrick, T. R. & Rosch, A. Theory of helimagnons in itinerant quantum systems. Phys. Rev. B 73, 054431 (2006).

Article 
ADS 

Google Scholar
 

Hannon, J. P., Trammell, G. T., Blume, M. & Gibbs, D. X-ray resonance exchange scattering. Phys. Rev. Lett. 61, 1245–1248 (1988).

van der Laan, G. Soft X-ray resonant magnetic scattering of magnetic nanostructures. C. R. Phys. 9, 570–584 (2008).

Burn, D. M. et al. Mode-resolved detection of magnetization dynamics using X-ray diffractive ferromagnetic resonance. Nano Lett. 20, 345–352 (2019).

Burn, D. M. et al. Depth-resolved magnetization dynamics revealed by X-ray reflectometry ferromagnetic resonance. Phys. Rev. Lett. 125, 137201 (2020).

Article 
ADS 

Google Scholar
 

Ran, K. et al. Axially bound magnetic skyrmions: glueing topological strings across an interface. Nano Lett. 22, 3737–3743 (2022).

Blume, M. & Gibbs, D. Polarization dependence of magnetic X-ray scattering. Phys. Rev. B 37, 1779–1789 (1988).

Gibbs, D. et al. Polarization and resonant properties of magnetic X-ray scattering in holmium. Phys. Rev. Lett. 61, 1241–1244 (1988).

Zhang, S. L., van der Laan, G. & Hesjedal, T. Direct experimental determination of spiral spin structures via the dichroism extinction effect in resonant elastic soft X-ray scattering. Phys. Rev. B 96, 094401 (2017).

Article 
ADS 

Google Scholar
 

Zhang, S. L., van der Laan, G. & Hesjedal, T. Direct experimental determination of the topological winding number of skyrmions in Cu2OSeO3. Nat. Commun. 8, 14619 (2017).

Article 
ADS 

Google Scholar
 

Zhang, S., van der Laan, G., Wang, W., Haghighirad, A. & Hesjedal, T. Direct observation of twisted surface skyrmions in bulk crystals. Phys. Rev. Lett. 120, 227202 (2018).

Article 
ADS 

Google Scholar
 

Silva, E. F. et al. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. J. Phys. D: Appl. Phys. 50, 185001 (2017).

Article 
ADS 

Google Scholar
 

Ran, K. et al. Creation of a chiral bobber lattice in helimagnet-multilayer heterostructures. Phys. Rev. Lett. 126, 017204 (2021).

Article 
ADS 

Google Scholar
 

Jin, H. et al. Evolution of emergent monopoles into magnetic skyrmion strings. Nano Lett. 23, 5164–5170 (2023).

Lüthi, C. et al. Hybrid magnetization dynamics in Cu2OSeO3/NiFe heterostructures. Appl. Phys. Lett. 122, 012401 (2023).

Article 
ADS 

Google Scholar
 

Hirobe, D., Shiomi, Y., Shimada, Y., Ichiro Ohe, J. & Saitoh, E. Generation of spin currents in the skyrmion phase of a helimagnetic insulator Cu2OSeO3. J. Appl. Phys. 117, 053904 (2015).

Tan, W., Jin, H., Fan, R., Ran, K. & Zhang, S. Evidence for giant surface Dzyaloshinskii-Moriya interaction in the chiral magnetic insulator Cu2OSeO3. Phys. Rev. B 109, L220402 (2024).

Article 
ADS 

Google Scholar
 

Zhang, S. L. et al. Resonant elastic X-ray scattering from the skyrmion lattice in Cu2OSeO3. Phys. Rev. B 93, 214420 (2016).

Article 
ADS 

Google Scholar
 

Smit, J. & Beljers, H. G. Ferromagnetic resonance absorption in BaFe12O10. Philips Res. Rep. 10, 113–130 (1955).

Zhang, S. et al. Mode locking between helimagnetism and ferromagnetism. Zenodo https://doi.org/10.5281/zenodo.18184389 (2026).