Erwin, D. H. & Valentine, J. W. The Cambrian Explosion: The Construction of Animal Biodiversity (Roberts & Company, 2013).

Briggs, D. E. G. The Cambrian explosion. Curr. Biol. 25, R864–R868 (2015).

Article 
CAS 
PubMed 

Google Scholar
 

Conway Morris, S. Burgess Shale faunas and the Cambrian explosion. Science 246, 339–346 (1989).

Article 
ADS 

Google Scholar
 

Butterfield, N. J. Exceptional fossil preservation and the Cambrian explosion. Integr. Comp. Biol. 43, 166–177 (2003).

Article 
PubMed 

Google Scholar
 

Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. Paleontol. Soc. Papers 20, 123–146 (2014).

Article 

Google Scholar
 

Zhuravlev, A. Y. & Wood, R. A. Anoxia as the cause of the mid-early Cambrian (Botomian) extinction event. Geology 24, 311–314 (1996).

Article 
ADS 
CAS 

Google Scholar
 

Myrow, P. M. et al. Tectonic trigger to the first major extinction of the Phanerozoic: the early Cambrian Sinsk event. Sci. Adv. 10, eadl3452 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Murphy, A., Penny, A., Zhuravlev, A. Y. & Wood, R. A. Changes in metazoan functional diversity across the Cambrian Radiation and the first Phanerozoic mass extinction: the Cambrian Sinsk Event. Proc. R. Soc. B 292, 20250968 (2025).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).

Article 
CAS 

Google Scholar
 

Zhao, F. C. et al. Diversity and species abundance patterns of the early Cambrian (Series 2, Stage 3) Chengjiang Biota from China. Paleobiology 40, 50–69 (2014).

Article 

Google Scholar
 

Fu, D. J. et al. The Qingjiang biota—a Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 363, 1338–1342 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Briggs, D. E. G., Collier, F. J. & Douglas, E. H. The Fossils of the Burgess Shale (Smithsonian Institution, 1994).

Zhuravlev, A. Y. & Wood, R. A. The two phases of the Cambrian Explosion. Sci. Rep. 8, 16656 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Wood, R. A. et al. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nat. Ecol. Evol. 3, 528–538 (2019).

Article 
PubMed 

Google Scholar
 

Bambach, R. K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127–155 (2006).

Article 
ADS 
CAS 

Google Scholar
 

Rohde, R. A. & Muller, R. A. Cycles in fossil diversity. Nature 434, 209–210 (2003).


Google Scholar
 

Gabbott, S. E., Zalasiewicz, J. & Collins, D. Sedimentation of the Phyllopod Bed within the Cambrian Burgess Shale Formation of British Columbia. J. Geol. Soc. 165, 307–318 (2008).

Article 
ADS 

Google Scholar
 

Zhu, M. Y. et al. Cambrian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 25–60 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Peng, S. C., Babcock, L. E. & Ahlberg, P. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 565–629 (Elsevier, 2020).

Hu, S. X. et al. The Guanshan Biota (Yunnan Science Press, 2013).

Wang, D. Z. et al. First report of the Pingding locality of the Balang Lagerstätte (Cambrian Stage 4), South China: implications for community complexity and geographic variation. Glob. Planet. Change 245, 104641 (2025).

Article 

Google Scholar
 

Gaines, R. R., García-Bellido, D. C., Jago, J. B., Myrow, P. M. & Paterson, J. R. The Emu Bay Shale: a unique early Cambrian Lagerstätte from a tectonically active basin. Sci. Adv. 10, eadp2650 (2024).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ivantsov, A. Y. et al. Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 69–88 (2005).

Article 

Google Scholar
 

Lieberman, B. S. A new soft-bodied fauna: the Pioche Formation of Nevada. J. Paleontol. 77, 674–690 (2003).

Article 
ADS 

Google Scholar
 

Pari, G., Briggs, D. E. G. & Gaines, R. R. The Parker Quarry Lagerstätte of Vermont—the first reported Burgess Shale-type fauna rediscovered. Geology 49, 693–697 (2021).

Article 
ADS 

Google Scholar
 

Butterfield, N. J. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16, 272–286 (1990).

Article 

Google Scholar
 

Gaines, R. R., Briggs, D. E. G. & Zhao, Y. L. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36, 755–758 (2008).

Article 
ADS 
CAS 

Google Scholar
 

Gabbott, S. E., Hou, X. G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004).

Article 
ADS 
CAS 

Google Scholar
 

Zhu, M. Y., Babcock, L. E. & Steiner, M. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): testing the roles of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 31–46 (2005).

Article 

Google Scholar
 

Forchielli, A., Steiner, M., Kasbohm, J., Hu, S. X. & Keupp, H. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 398, 59–85 (2014).

Article 

Google Scholar
 

Caron, J.-B. & Jackson, D. A. Paleoecology of the Greater Phyllopod Bed community, Burgess Shale. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 222–256 (2008).

Article 

Google Scholar
 

Caron, J.-B., Gaines, R. R., Aria, C., Mángano, M. G. & Streng, M. A new phyllopod bed-like assemblage from the Burgess Shale of the Canadian Rockies. Nat. Commun. 5, 3210 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Yang, X. F. et al. A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat. Ecol. Evol. 5, 1082–1090 (2021).

Article 
PubMed 

Google Scholar
 

Aria, C. & Caron, J.-B. Cephalic and limb anatomy of a new isoxyid from the Burgess Shale and the role of ‘stem bivalved arthropods’ in the disparity of the frontalmost appendage. PLoS ONE 10, e0124979 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Aria, C. & Caron, J.-B. A middle Cambrian arthropod with chelicerae and proto-book gills. Nature 573, 586–589 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhang, M. J. et al. Amplectobeluid radiodont Guanshancaris gen. nov. from the lower Cambrian (Stage 4) Guanshan Lagerstätte of South China: biostratigraphic and paleobiogeographic implications. Biology 12, 583 (2023).

Article 
PubMed 
PubMed Central 

Google Scholar
 

Botting, J. P. & Muir, L. A. Early sponge evolution: a review and phylogenetic framework. Palaeoworld 27, 1–29 (2018).

Article 

Google Scholar
 

Conway Morris, S. & Caron, J.-B. Halwaxiids and the early evolution of the lophotrochozoans. Science 315, 1255–1258 (2007).

Article 
ADS 

Google Scholar
 

Caron, J.-B., Conway Morris, S. & Shu, D. G. Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS ONE 5, e9586 (2010).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Maletz, J. The evolutionary origins of the Hemichordata (Enteropneusta & Pterobranchia)—a review based on fossil evidence and interpretations. Bull. Geosci. 99, 127–147 (2024).

Article 

Google Scholar
 

Henschke, N., Everett, J. D., Richardson, A. J. & Suthers, I. M. Rethinking the role of salps in the ocean. Trends Ecol. Evol. 31, 720–733 (2016).

Article 
PubMed 

Google Scholar
 

Nanglu, K., Lerosey-Aubril, R., Weaver, J. C. & Ortega-Hernández, J. A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan. Nat. Commun. 14, 3832 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Na, L., Kocsis, ÁT., Li, Q. J. & Kiessling, W. Coupling of geographic range and provincialism in Cambrian marine invertebrates. Paleobiology 49, 284–295 (2023).

Article 

Google Scholar
 

Na, L. & Kiessling, W. Diversity partitioning during the Cambrian radiation. Proc. Natl Acad. Sci. USA 112, 4702–4706 (2015).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hendricks, J. R. & Lieberman, B. S. Biogeography and the Cambrian radiation of arachnomorph arthropods. Mem. Assoc. Australas. Palaeontol. 34, 461–471 (2007).


Google Scholar
 

Holmes, J. D. & Budd, G. E. Reassessing a cryptic history of early trilobite evolution. Comm. Biol. 5, 1177 (2022).

Article 

Google Scholar
 

He, T. C. et al. Possible links between extreme oxygen perturbations and the Cambrian radiation of animals. Nat. Geosci. 12, 468–474 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Jourdan, F. et al. High-precision dating of the Kalkarindji large igneous province, Australia, and synchrony with the Early–Middle Cambrian (Stage 4–5) extinction. Geology 42, 543–546 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Bowyer, F. T., Wood, R. A. & Yilales, M. Sea level controls on Ediacaran–Cambrian animal radiations. Sci. Adv. 10, eado6462 (2024).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Hearing, T. W. et al. An early Cambrian greenhouse climate. Sci. Adv. 4, eaar5690 (2018).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Steiner, M., Zhu, M. Y., Zhao, Y. L. & Erdtmann, B.-D. Lower Cambrian Burgess Shale-type fossil associations of South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 220, 129–152 (2005).

Article 

Google Scholar
 

Wood, R. A. & Erwin, D. H. Innovation not recovery: dynamic redox promotes metazoan radiations. Biol. Rev. 93, 863–873 (2018).

Article 
PubMed 

Google Scholar
 

Sepkoski, J. J. A model of onshore-offshore change in faunal diversity. Paleobiology 17, 58–77 (1991).

Article 
PubMed 

Google Scholar
 

Zhuravlev, A. Y., Wood, R. A. & Bowyer, F. Cambrian radiation speciation events driven by sea level and redoxcline changes on the Siberian Craton. Sci. Adv. 9, eadh2558 (2023).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, M. Y. The origin and Cambrian explosion of animals: fossil evidences from China. Acta Palaeontol. Sinica 49, 269–287 (2010).


Google Scholar
 

Scotese, C. R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. Earthbyte https://www.earthbyte.org/paleomap-paleoatlas-for-gplates (2016).

Scotese, C. R. Global mean surface temperatures for 100 phanerozoic time intervals (scotese02a_v21321 (C1)). Zenodo https://doi.org/10.5281/zenodo.5718391 (2022).

Rasmussen, C. M. Ø, Kröger, B., Nielsen, M. L. & Colmenar, J. Cascading trend of Early Paleozoic marine radiations paused by Late Ordovician extinctions. Proc. Natl Acad. Sci. USA 116, 7207–7213 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhu, M. Y., Babcock, L. E. & Peng, S. C. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques, paleobiology, taphonomy and paleoenvironmental reconstruction. Palaeoworld 15, 217–222 (2006).

Article 

Google Scholar
 

Kocsis, ÁT., Reddin, C. J., Alroy, J. & Kiessling, W. The R package divDyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).

Article 

Google Scholar
 

Kocsis, Á. T., Alroy, J., Reddin, C. J. & Kiessling, W. Phanerozoic-scale global marine biodiversity analysis with the R package divDyn v0.8. GitHub https://github.com/divDyn/ddPhanero/blob/master/doc/dd_phanero.pdf (2019).

Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Zhu, M. Y. et al. Lithostratigraphic subdivision and correlation of the Cambrian in China. J. Stratigr. 45, 223–249 (2021).


Google Scholar
 

Yang, A. H., Zhu, M. Y., Zhang, J. M. & Li, G. X. Early Cambrian eodiscoid trilobites of the Yangtze Platform and their stratigraphic implications. Prog. Nat. Sci. 13, 861–866 (2003).

Article 

Google Scholar
 

Kocsis, ÁT. & Scotese, C. R. Mapping paleocoastlines and continental flooding during the Phanerozoic. Earth Sci. Rev. 213, 103463 (2021).

Article 

Google Scholar
 

Kocsis, Á. T. & Scotese, C. R. PaleoMAP PaleoCoastlines data (7.2). Zenodo https://doi.org/10.5281/zenodo.3903163 (2023).

Scotese, C. R., Song, H., Mills, B. J. W. & van der Meer, D. G. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth Sci. Rev. 215, 103503 (2021).

Article 
CAS 

Google Scholar
 

Müller, R. D. et al. GPlates: building a virtual Earth through deep time. Geochem. Geophys. Geosyst. 19, 2243–2261 (2018).

Article 
ADS 

Google Scholar
 

Dornbos, S. Q. & Chen, J. Y. Community palaeoecology of the early Cambrian Maotianshan Shale biota: ecological dominance of priapulid worms. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 200–212 (2008).

Article 

Google Scholar
 

Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).

Article 

Google Scholar
 

Oksanen, J. et al. vegan: community ecology package. R package version 2.6-8. https://CRAN.R-project.org/package=vegan (2024).

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).

Article 

Google Scholar
 

Conway Morris, S. The community structure of the Middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology 29, 423–467 (1986).


Google Scholar
 

Csardi, G. & Nepusz, T. The igraph software. Complex Syst. 1695, 1–9 (2006).


Google Scholar
 

Zeng, H., Zhao, F. C. & Zhu, M. Y. Code and datasets for ‘A Cambrian soft-bodied biota after the first Phanerozoic mass extinction’. Science Data Bank https://cstr.cn/31253.11.sciencedb.32659 (2025).