Rogelj, J. et al. Credibility gap in net-zero climate targets leaves world at high risk. Science 380, 1014–1016 (2023).
Boehm, S. et al. State of Climate Action 2023 (World Resources Institute, 2023); https://doi.org/10.46830/wrirpt.23.00010
Forster, P. M. et al. Indicators of global climate change 2023: annual update of key indicators of the state of the climate system and human influence. Earth Syst. Sci. Data 16, 2625–2658 (2024).
Byers, E. et al. AR6 Scenarios Database. Zenodo https://doi.org/10.5281/zenodo.5886912 (2022).
Riahi, K. et al. IPCC Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).
Fuss, S. et al. Negative emissions—part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 63002 (2018).
Deprez, B. A. et al. Sustainability limits needed for CO2 removal. Science 383, 484–486 (2024).
Braun, J. et al. Multiple planetary boundaries preclude biomass crops for carbon capture and storage outside of agricultural areas. Commun. Earth Environ. 6, 1–14 (2025).
Pörtner, H. O. et al. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844.001
Wood Hansen, O. & van den Bergh, J. Environmental problem shifting from climate change mitigation: a mapping review. Proc. Natl Acad. Sci. USA Nexus 3, pgad448 (2024).
Vaidyanathan, G. Integrated assessment climate policy models have proven useful, with caveats. Proc. Natl Acad. Sci. USA 118, e2101899118 (2021).
Soergel, B. et al. A sustainable development pathway for climate action within the UN 2030 agenda. Nat. Clim. Change 11, 656–664 (2021).
Hirata, A. et al. The choice of land-based climate change mitigation measures influences future global biodiversity loss. Commun. Earth Environ. 5, 259 (2024).
Hanssen, S. V. et al. Biomass residues as twenty-first century bioenergy feedstock—a comparison of eight integrated assessment models. Clim. Change 163, 1569–1586 (2020).
Hof, C. et al. Bioenergy cropland expansion may offset positive effects of climate change mitigation for global vertebrate diversity. Proc. Natl Acad. Sci. USA 115, 13294–13299 (2018).
Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).
Heck, V., Gerten, D., Lucht, W. & Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Change 8, 151–155 (2018).
Azuero-Pedraza, C. G., Lauri, P., Lessa Derci Augustynczik, A. & Thomas, V. M. Managing forests for biodiversity conservation and climate change mitigation. Environ. Sci. Technol. 58, 9175–9186 (2024).
Powell, T. W. R. & Lenton, T. M. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity. Environ. Res. Lett. 8, 025024 (2013).
Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).
Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
Jantz, S. M. et al. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv. Biol. 29, 1122–1131 (2015).
Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 360, 791–795 (2018).
Price, J., Warren, R. & Forstenhäusler, N. Biodiversity losses associated with global warming of 1.5 to 4 °C above pre-industrial levels in six countries. Clim. Change 177, 47 (2024).
IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (Cambridge Univ. Press, 2023); https://doi.org/10.1017/9781009325844
Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. A/RES/71/313 (United Nations, 2017).
Kunming–Montreal Global Biodiversity Framework. CBD/COP/DEC/15/4 (CBD, 2022).
Fujimori, S. et al. Downscaling Global Emissions and Its Implications Derived from Climate Model Experiments. PLoS One 12, e0169733–e0169733 (2017).
Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).
Havlík, P. et al. Climate change mitigation through livestock system transitions. Proc. Natl Acad. Sci. USA 111, 3709–3714 (2014).
IMAGE Framework Version Overview (PBL, 2025).
van Vuuren, D. P. et al. Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm. Glob. Environ. Change 42, 237–250 (2017).
Chen, M. et al. Global land use for 2015–2100 at 0.05° resolution under diverse socioeconomic and climate scenarios. Sci. Data 7, 320 (2020).
Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).
Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
Fesenmyer, K. A. et al. Addressing critiques refines global estimates of reforestation potential for climate change mitigation. Nat. Commun. 16, 4572 (2025).
Stenzel, F. et al. biospheremetrics v1.0.2: an R package to calculate two complementary terrestrial biosphere integrity indicators—human colonization of the biosphere (BioCol) and risk of ecosystem destabilization (EcoRisk). Geosci. Model Dev. 17, 3235–3258 (2024).
Smith, J. R., Beaury, E. M., Cook-Patton, S. C. & Levine, J. M. Variable impacts of land-based climate mitigation on habitat area for vertebrate diversity. Science 387, 420–425 (2025).
Hu, X., Huang, B., Verones, F., Cavalett, O. & Cherubini, F. Overview of recent land-cover changes in biodiversity hotspots. Front. Ecol. Environ. 19, 91–97 (2021).
Winberg, J., Smith, H. G. & Ekroos, J. Bioenergy crops, biodiversity and ecosystem services in temperate agricultural landscapes—a review of synergies and trade-offs. GCB Bioenergy 15, 1204–1220 (2023).
ESA CCI/C3S Global Land Cover product 2022 v2.1.1 (ESA, 2022); https://maps.elie.ucl.ac.be/CCI/viewer/download.php
Klein Goldewijk, K., Beusen, A., Doelman, J. & Stehfest, E. Anthropogenic land use estimates for the Holocene—HYDE 3.2. Earth Syst. Sci. Data 9, 927–953 (2017).
Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl Acad. Sci. USA 119, e2117297119 (2022).
Molotoks, A. et al. Global projections of future cropland expansion to 2050 and direct impacts on biodiversity and carbon storage. Glob. Change Biol. 24, 5895–5908 (2018).
Soergel, B. et al. Multiple pathways towards sustainable development goals and climate targets. Environ. Res. Lett. 19, 124009 (2024).
Doelman, J. C. et al. Quantifying synergies and trade-offs in the global water-land–food–climate nexus using a multi-model scenario approach. Environ. Res. Lett. 17, 045004 (2022).
Urban, M. C. Climate change extinctions. Science 386, 1123–1128 (2024).
World Bank Country and Lending Groups (World Bank, 2025); https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
Fyson, C. L., Baur, S., Gidden, M. & Schleussner, C. F. Fair-share carbon dioxide removal increases major emitter responsibility. Nat. Clim. Change 10, 836–841 (2020).
Rajamani, L. et al. National ‘fair shares’ in reducing greenhouse gas emissions within the principled framework of international environmental law. Clim. Policy 21, 983–1004 (2021).
United Nations Framework Convention On Climate Change (United Nations, 1992).
Carton, W., Lund, J. F. & Dooley, K. Undoing equivalence: rethinking carbon accounting for just carbon removal. Front. Clim. https://doi.org/10.3389/fclim.2021.664130 (2021).
Jäger, F. et al. Fire weather compromises forestation-reliant climate mitigation pathways. Earth Syst. Dyn. 15, 1055–1071 (2024).
Fujimori, S. et al. Land-based climate change mitigation measures can affect agricultural markets and food security. Nat. Food 3, 110–121 (2022).
Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).
Weiskopf, S. R. et al. Biodiversity loss reduces global terrestrial carbon storage. Nat. Commun. 15, 4354 (2024).
Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Change 11, 543–550 (2021).
Yang, Y., Tilman, D., Furey, G. & Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 10, 718 (2019).
Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).
Prütz, R., Fuss, S., Lück, S., Stephan, L. & Rogelj, J. A taxonomy to map evidence on the co-benefits, challenges, and limits of carbon dioxide removal. Commun. Earth Environ. 5, 1–11 (2024).
Di Sacco, A. et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 27, 1328–1348 (2021).
Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).
Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).
Stenzel, F., Gerten, D. & Hanasaki, N. Global scenarios of irrigation water abstractions for bioenergy production: a systematic review. Hydrol. Earth Syst. Sci. 25, 1711–1726 (2021).
Humpenöder, F. et al. Large-scale bioenergy production: how to resolve sustainability trade-offs?. Environ. Res. Lett. 13, 024011 (2018).
Næss, J. S., Cavalett, O. & Cherubini, F. The land–energy–water nexus of global bioenergy potentials from abandoned cropland. Nat. Sustain. 4, 525–536 (2021).
Werling, B. P. et al. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl Acad. Sci. USA 111, 1652–1657 (2014).
Immerzeel, D. J., Verweij, P. A., van der Hilst, F. & Faaij, A. P. C. Biodiversity impacts of bioenergy crop production: a state-of-the-art review. GCB Bioenergy 6, 183–209 (2014).
Strefler, J. et al. Carbon dioxide removal technologies are not born equal. Environ. Res. Lett. 16, 074021 (2021).
Bergero, C., Wise, M., Lamers, P., Wang, Y. & Weber, M. Biochar as a carbon dioxide removal strategy in integrated long-run mitigation scenarios. Environ. Res. Lett. 19, 074076 (2024).
Rueda, O., Mogollón, J. M., Tukker, A. & Scherer, L. Negative-emissions technology portfolios to meet the 1.5 °C target. Glob. Environ. Change 67, 102238 (2021).
Fuhrman, J. et al. Diverse carbon dioxide removal approaches could reduce impacts on the energy–water–land system. Nat. Clim. Change https://doi.org/10.1038/s41558-023-01604-9 (2023).
Rodriguez Mendez, Q., Creutzig, F. & Fuss, S. Deep uncertainty in carbon dioxide removal portfolios. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/adc613 (2025).
Terlouw, T., Treyer, K., Bauer, C. & Mazzotti, M. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environ. Sci. Technol. 55, 11397–11411 (2021).
Adam, M., Kleinen, T., May, M. M. & Rehfeld, K. Land conversions not climate effects are the dominant indirect consequence of sun-driven CO2 capture, conversion, and sequestration. Environ. Res. Lett. 20, 034011 (2025).
Shindell, D. & Rogelj, J. Preserving carbon dioxide removal to serve critical needs. Nat. Clim. Change https://doi.org/10.1038/s41558-025-02251-y (2025).
Buck, H. J., Carton, W., Lund, J. F. & Markusson, N. Why residual emissions matter right now. Nat. Clim. Change 13, 351–358 (2022).
Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5 (2011).
Warren, R., Price, J., VanDerWal, J., Cornelius, S. & Sohl, H. The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. Clim. Change 147, 395–409 (2018).
Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).
Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199 (2002).
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).
Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/ZENODO.3261807 (2016).
Noss, R. F. et al. How global biodiversity hotspots may go unrecognized: lessons from the North American coastal plain. Divers. Distrib. 21, 236–244 (2015).
Williams, K. J. et al. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) (Springer, 2011); https://doi.org/10.1007/978-3-642-20992-5_16
Elson, P. et al. SciTools/cartopy: REL: v0.24.1. Zenodo https://doi.org/10.5281/ZENODO.1182735 (2024).
Prütz, R. et al. Biodiversity implications of land-intensive carbon dioxide removal. Zenodo https://doi.org/10.5281/ZENODO.15210722 (2025).
Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).
Fujimori, S. & Hasegawa, T. AIM-SSP/RCP gridded emissions and land-use data. National Institute for Environmental Studies, Japan https://doi.org/10.18959/20180403.001 (2018).
Frank, S. et al. Land-based climate change mitigation potentials within the agenda for sustainable development. Environ. Res. Lett. 16, 24006 (2021).
Hasler, N. et al. Accounting for albedo change to identify climate-positive tree cover restoration. Nat. Commun. 15, 2275 (2024).
Doelman, J. C. & Stehfest, E. The risks of overstating the climate benefits of ecosystem restoration. Nature 609, E1–E3 (2022).
Scherer, L. et al. Biodiversity impact assessment considering land use intensities and fragmentation. Environ. Sci. Technol. 57, 19612–19623 (2023).
World Administrative Boundaries—Countries and Territories (World Food Programme, 2019).
Pelz, S. Unofficial regional—iso3c mapping. GitHub https://github.com/setupelz/regioniso3c (2024).
Country classification (UNCTAD, 2025); https://unctadstat.unctad.org/EN/Classifications.html
Stuart-Smith, R. F. et al. Implications of states’ dependence on carbon dioxide removal for achieving the Paris temperature goal. Clim. Policy https://doi.org/10.1080/14693062.2025.2528775 (2025).
Chen, M. et al. Global Land Use for 2015–2100 at 0.05° Resolution Under Diverse Socioeconomic and Climate Scenarios (Pacific Northwest National Laboratory 2, 2020); https://doi.org/10.25584/DATA.2020-07.1357/1644253
Krisztin, T., Havlik, P. & Leclère, D. Downscaled land cover for SSP IAM ‘marker’ scenarios, 2010–2100. Zenodo https://doi.org/10.5281/ZENODO.15964077 (2025).
Doelman, J. & Daioglou, V. Gridded SSP-RCP land cover data from IMAGE 3.0.1. Zenodo https://doi.org/10.5281/ZENODO.17046335 (2025).
Popp, A. & Humpenöder, F. Gridded SSP-RCP land cover data from REMIND-MAgPIE 1.6-3.0. Zenodo https://doi.org/10.5281/ZENODO.17047534 (2025).
Braun, J. et al. Code and data for ‘Multiple planetary boundaries preclude BECCS outside of agricultural areas’. Zenodo https://doi.org/10.5281/ZENODO.14514051 (2024).