Kadohisa, M. Effects of odor on emotion, with implications. Front. Syst. Neurosci. 7, 57047 (2013).
Zucco, G. M., Aiello, L., Turuani, L. & Köster, E. Odor-evoked autobiographical memories: age and gender differences along the life span. Chem. Senses 37, 179–189 (2012).
Robin, O., Alaoui-Ismaïli, O., Dittmar, A. & Vernet-Maury, E. Emotional responses evoked by dental odors: an evaluation from autonomic parameters. J. Dent. Res. 77, 1638–1646 (1998).
Sullivan, R. M., Landers, M., Yeaman, B. & Wilson, D. A. Good memories of bad events in infancy. Nature 407, 38–39 (2000).
Hummel, T. & Nordin, S. Olfactory disorders and their consequences for quality of life. Acta Otolaryngol. 125, 116–121 (2005).
Whitcroft, K. L. et al. Position paper on olfactory dysfunction: 2023. Rhinology 61, 1–108 (2023).
Peters, J. M. et al. Olfactory function in mild cognitive impairment and Alzheimer’s disease: an investigation using psychophysical and electrophysiological techniques. Am. J. Psychiatry 160, 1995–2002 (2003).
Haugen, J. et al. Prevalence of impaired odor identification in Parkinson disease with imaging evidence of nigrostriatal denervation. J. Neural Transm. 123, 421–424 (2016).
Ross, G. W. et al. Association of olfactory dysfunction with risk for future Parkinson’s disease. Ann. Neurol. 63, 167–173 (2008).
Oppo, V., Melis, M., Melis, M., Tomassini Barbarossa, I. & Cossu, G. “Smelling and tasting” Parkinson’s disease: using senses to improve the knowledge of the disease. Front. Aging Neurosci. 12, 43 (2020).
Murphy, C. Olfactory and other sensory impairments in Alzheimer disease. Nat. Rev. Neurol. 15, 11–24 (2019).
Rahayel, S., Frasnelli, J. & Joubert, S. The effect of Alzheimer’s disease and Parkinson’s disease on olfaction: A meta-analysis. Behav. Brain Res. 231, 60–74 (2012).
Sorokowski, P. et al. Sex differences in human olfaction: a meta-analysis. Front. Psychol. 10, 426219 (2019).
Stogbauer, J. et al. Prevalence and risk factors of smell dysfunction – a comparison between five German population-based studies. Rhinol. J. 0, 0–0 (2019).
Doty, R. L. & Cameron, E. L. Sex differences and reproductive hormone influences on human odor perception. Physiol. Behav. 97, 213–228 (2009).
Kovacs, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Res. Rev. 3, 215–232 (2004).
Hayakawa, A. et al. Skeletal and gene-regulatory functions of nuclear sex steroid hormone receptors. J. Bone Miner. Metab. 40, 361–374 (2022).
Vrtačnik, P., Ostanek, B., Mencej-Bedrač, S. & Marc, J. The many faces of estrogen signaling. Biochem. Med. 24, 329–342 (2014).
Owen, G. I. & Zelent, A. Origins and evolutionary diversification of the nuclear receptor superfamily. Cell. Mol. Life Sci. 57, 809–827 (2000).
Keller, A. & Vosshall, L. B. Better smelling through genetics: mammalian odor perception. Curr. Opin. Neurobiol. 18, 364–369 (2008).
Manzini, I., Frasnelli, J. & Croy, I. Wie wir riechen und was es für uns bedeutet. HNO 62, 846–852 (2014).
Jaeger, S. R., McRae, J. F., Salzman, Y., Williams, L. & Newcomb, R. D. A preliminary investigation into a genetic basis for cis-3-hexen-1-ol odour perception: a genome-wide association approach. Food Qual. Prefer. 21, 121–131 (2010).
McRae, J. F. et al. Identification of regions associated with variation in sensitivity to food-related odors in the human genome. Curr. Biol. 23, 1596–1600 (2013).
Gisladottir, R. S. et al. Sequence variants in TAAR5 and other loci affect human odor perception and naming. Curr. Biol. 30, 4643–4653.e3 (2020).
Dong, J. et al. Genome-wide association analysis of the sense of smell in U.S. older adults: identification of novel risk loci in African Americans and European Americans. Mol. Neurobiol. 54, 8021–8032 (2017).
Kobal, G. et al. Sniffin’ Sticks’: screening of olfactory performance. Rhinology 34, 222–226 (1996).
Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic associations for common traits. PLOS Genet. 6, e1000993 (2010).
Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 31, 3555–3557 (2015).
Kircher, M. et al. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).
Díaz-Guerra, E., Pignatelli, J., Nieto-Estévez, V. & Vicario-Abejón, C. transcriptional regulation of olfactory bulb neurogenesis. Anat. Rec. 296, 1364–1382 (2013).
Devasani, K. & Yao, Y. Expression and functions of adenylyl cyclases in the CNS. Fluids Barriers 19, 23 (2022).
Mena, E. L. et al. Dimerization quality control ensures neuronal development and survival. Science 362, eaap8236 (2018).
Fukutani, Y., Koshizawa, T. & Yohda, M. Application of vapor phase stimulation method for screening of human odorant receptors responding to cinnamaldehyde. Sens. Mater. 33, 4203 (2021).
Weidinger, D. et al. Olfactory receptors impact pathophysiological processes of lung diseases in bronchial epithelial cells. Eur. J. Cell Biol. 103, 151408 (2024).
Garcia-Esparcia, P. et al. Functional genomics reveals dysregulation of cortical olfactory receptors in Parkinson disease: novel putative chemoreceptors in the human brain. J. Neuropathol. Exp. Neurol. 72, 524–539 (2013).
Cole, J. B., Florez, J. C. & Hirschhorn, J. N. Comprehensive genomic analysis of dietary habits in UK Biobank identifies hundreds of genetic associations. Nat. Commun. 11, 1467 (2020).
Saunders, G. R. B. et al. Genetic diversity fuels gene discovery for tobacco and alcohol use. Nature 612, 720–724 (2022).
Menashe, I. et al. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol. 5, e284 (2007).
Pino, J. A. Odour-active compounds in pineapple (Ananas comosus [L.] Merril cv. Red Spanish). Int. J. Food Sci. Technol. 48, 564–570 (2013).
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 1412–1425 (2018).
Gudmundsson, J. et al. Genome-wide associations for benign prostatic hyperplasia reveal a genetic correlation with serum levels of PSA. Nat. Commun. 9, 4568 (2018).
Akilen, R., Pimlott, Z., Tsiami, A. & Robinson, N. Effect of short-term administration of cinnamon on blood pressure in patients with prediabetes and type 2 diabetes. Nutrition 29, 1192–1196 (2013).
Jaeger, S. R. et al. A Mendelian trait for olfactory sensitivity affects odor experience and food selection. Curr. Biol. 23, 1601–1605 (2013).
Li, B. et al. From musk to body odor: decoding olfaction through genetic variation. PLOS Genet. 18, e1009564 (2022).
Yoshikawa, K., Deguchi, J., Hu, J., Lu, H.-Y. & Matsunami, H. An odorant receptor that senses four classes of musk compounds. Curr. Biol. 32, 5172–5179.e5 (2022).
Sato-Akuhara, N. et al. Genetic variation in the human olfactory receptor OR5AN1 associates with the perception of musks. Chem. Senses 48, bjac037 (2023).
Zhou, Y. et al. Comparative phosphoproteomic profiling of type III adenylyl cyclase knockout and control, male, and female mice. Front. Cell. Neurosci. 13, 34 (2019).
Wong, S. T. et al. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27, 487–497 (2000).
Ruth, K. S. et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 26, 252–258 (2020).
Mori, K. & Shepherd, G. M. Emerging principles of molecular signal processing by mitral/tufted cells in the olfactory bulb. Semin. Cell Biol. 5, 65–74 (1994).
Bushdid, C., Magnasco, M. O., Vosshall, L. B. & Keller, A. Humans can discriminate more than 1 trillion olfactory stimuli. Science 343, 1370–1372 (2014).
Hummel, T., Sekinger, B., Wolf, S. R., Pauli, E. & Kobal, G. ‘Sniffin’ sticks’: olfactory performance assessed by the combined testing of odor identification, odor discrimination and olfactory threshold. Chem. Senses 22, 39–52 (1997).
Kim, H. & Greer, C. A. The emergence of compartmental organization in olfactory bulb glomeruli during postnatal development. J. Comp. Neurol. 422, 297–311 (2000).
Hedner, M., Larsson, M., Arnold, N., Zucco, G. M. & Hummel, T. Cognitive factors in odor detection, odor discrimination, and odor identification tasks. J. Clin. Exp. Neuropsychol. 32, 1062–1067 (2010).
Yahiaoui-Doktor, M. et al. Olfactory function is associated with cognitive performance: results from the population-based LIFE-adult-study. Alzheimers Res. Ther. 11, 43 (2019).
Royet, J.-P., Koenig, O., Paugam-Moisy, H., Puzenat, D. & Chasse, J.-L. Levels-of-processing effects on a task of olfactory naming. Percept. Mot. Skills 98, 197–213 (2004).
Wilson, S., Qi, J. & Filipp, F. V. Refinement of the androgen response element based on ChIP-Seq in androgen-insensitive and androgen-responsive prostate cancer cell lines. Sci. Rep. 6, 32611 (2016).
Schneider, R. A., Costiloe, J. P., Howard, R. P. & Wolf, S. Olfactory perception thresholds in hypogonadal women: changes accompanying administration of androgen and estrogen. J. Clin. Endocrinol. Metab. 18, 379–390 (1958).
Good, P. R., Geary, N. & Engen, T. The effect of estrogen on odor detection. Chem. Senses 2, 45–50 (1976).
Kass, M. D., Czarnecki, L. A., Moberly, A. H. & McGann, J. P. Differences in peripheral sensory input to the olfactory bulb between male and female mice. Sci. Rep. 7, 45851 (2017).
Chen, Y.-C. et al. TOMM40 genetic variants cause neuroinflammation in Alzheimer’s disease. Int. J. Mol. Sci. 24, 4085 (2023).
Kovács, T., Cairns, N. J. & Lantos, P. L. Olfactory centres in Alzheimer’s disease: olfactory bulb is involved in early Braak’s stages. NeuroReport 12, 285 (2001).
Ayabe-Kanamura, S. et al. Differences in perception of everyday odors: a Japanese-German cross-cultural study. Chem. Senses 23, 31–38 (1998).
Chrea, C. et al. Culture and odor categorization: agreement between cultures depends upon the odors. Food Qual. Prefer. 15, 669–679 (2004).
Neumann, C. et al. Validation study of the “Sniffin’ Sticks” olfactory test in a British population: a preliminary communication. Clin. Otolaryngol. 37, 23–27 (2012).
Hsieh, J. W., Keller, A., Wong, M., Jiang, R.-S. & Vosshall, L. B. SMELL-S and SMELL-R: olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience. Proc. Natl. Acad. Sci. 114, 11275–11284 (2017).
Pattaro, C. et al. The Cooperative Health Research in South Tyrol (CHRIS) study: rationale, objectives, and preliminary results. J. Transl. Med. 13, 348 (2015).
Engel, C. et al. Cohort profile: the LIFE-adult-study. Int. J. Epidemiol. 52, e66–e79 (2023).
Wright, J. D. et al. The atherosclerosis risk in communities (ARIC) study: JACC focus seminar 3/8. J. Am. Coll. Cardiol. 77, 2939–2959 (2021).
Taliun, D. et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 590, 290–299 (2021).
McVean, G. A. et al. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012).
Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).
Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics 31, 782–784 (2015).
Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).
Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. Nat. Genet. 53, 1097–1103 (2021).
Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. Bioinformatics 25, 1841–1842 (2009).
Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
White, J. D. Miamiplot: an R package for creating ggplot2 based miami plots. (2020).
Gordon, M. The Forestplot package. https://github.com/gforge/forestplot (2022).
Boughton, A. P. et al. LocusZoom.js: interactive and embeddable visualization of genetic association study results. Bioinformatics 37, 3017–3018 (2021).
Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association studies accounting for ancestry increases power for discovery and improves fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).
Wakefield, J. Bayes factors for genome-wide association studies: comparison with P-values. Genet. Epidemiol. 33, 79–86 (2009).
Johnson, T. tobyjohnson/gtx. https://github.com/tobyjohnson/gtx (2023).
Scholz, M. et al. Genome-wide meta-analysis of phytosterols reveals five novel loci and a detrimental effect on coronary atherosclerosis. Nat. Commun. 13, 143 (2022).
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
Sollis, E. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2022).
The GTEx Consortium et al. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
Safran, M. et al. The GeneCards Suite. In Practical Guide to Life Science Databases (eds. Abugessaisa, I. & Kasukawa, T.) 27–56 (Springer Nature, Singapore, 2021). https://doi.org/10.1007/978-981-16-5812-9_2.
Stelzer, G. et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinform. 54, 1.30.1–1.30.33 (2016).
Winkler, T. W. et al. Approaches to detect genetic effects that differ between two strata in genome-wide meta-analyses: recommendations based on a systematic evaluation. PLoS ONE 12, e0181038 (2017).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
Lloyd-Jones, L. R. et al. The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 100, 228–237 (2017).
Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).
Hatton, A. A. et al. Genetic control of DNA methylation is largely shared across European and East Asian populations. Nat. Commun. 15, 2713 (2024).
Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
hmgu-itg/VCF-liftover. Institute of translational genomics. https://github.com/hmgu-itg/VCF-liftover (2016).
Bourdeau, V. et al. Genome-Wide Identification of High-Affinity Estrogen Response Elements in Human and Mouse. Mol. Endocrinol. 18, 1411–1427 (2004).
Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).
Karczewski, K. J. et al. Pan-UK Biobank GWAS improves discovery, analysis of genetic architecture, and resolution into ancestry-enriched effects. Preprint at https://doi.org/10.1101/2024.03.13.24303864 (2024).
Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
Xue, A. et al. Unravelling the complex causal effects of substance use behaviours on common diseases. Commun. Med. 4, 1–13 (2024).
Kurki, M. I. et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613, 508–518 (2023).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587–D592 (2023).
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).
Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017).
Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol. 46, 1734–1739 (2017).
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology 28, 30 (2017).
Rees, J. M. B., Wood, A. M., Dudbridge, F. & Burgess, S. Robust methods in Mendelian randomization via penalization of heterogeneous causal estimates. PLoS ONE 14, e0222362 (2019).
Burgess, S., Small, D. S. & Thompson, S. G. A review of instrumental variable estimators for Mendelian randomization. Stat. Methods Med. Res. 26, 2333–2355 (2017).
Förster, F. GenStatLeipzig/GWAMA_olfaction: initial release. Zenodo https://doi.org/10.5281/zenodo.15606619 (2025).