Storlazzi, C. D. & Griggs, G. B. Influence of El Niño-Southern Oscillation (ENSO) events on the coastline of central California. J. Coast. Res. SI:26, 146–153 (1998).


Google Scholar
 

Barnard, P. L. et al. The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophys. Res. Lett. 38, LI3604 (2011).

Article 

Google Scholar
 

Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).

Article 
ADS 
CAS 

Google Scholar
 

Barnard, P. et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 8, 14365 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Doria, A., Guza, R. T., O ‘Reilly, W. C. & Yates, M. L. Observations and modeling of San Diego beaches during El Niño. Cont. Shelf Res. 124, 153–164 (2016).

Article 
ADS 

Google Scholar
 

Young, A. P. et al. Southern California coastal response to the 2015–2016 El Niño. J. Geophys. Res. Earth Surf. 123, 3069–3083 (2018).

Article 
ADS 

Google Scholar
 

Vos, K., Harley, M. D., Turner, I. L. & Splinter, K. D. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 16, 140–146 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Graffin, M. et al. Waterline responses to climate forcing along the North American West Coast. Commun. Earth Environ. 6, 444 (2025).

Article 
ADS 

Google Scholar
 

Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. & Turner, I. L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 150, 160–174 (2019).

Article 

Google Scholar
 

Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home (2017).

Vitousek, S., Vos, K., Splinter, K. D., Erikson, L. & Barnard, P. L. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions. J. Geophys. Res. Earth Surf. 128, e2022JF006936 (2023).

Article 
ADS 

Google Scholar
 

Anderson, D., Ruggiero, P., Antolínez, J. A. A., Méndez, F. J. & Allan, J. A climate index optimized for longshore sediment transport reveals interannual and multidecadal littoral cell rotations. J. Geophys. Res. Earth Surf. 123, 1958–1981 (2018).

Article 
ADS 

Google Scholar
 

Wang, X. L. & Swail, V. R. Changes of extreme wave heights in northern hemisphere oceans and related atmospheric circulation regimes. J. Clim. 14, 2204–2221 (2001).

Article 
ADS 

Google Scholar
 

Adams, P. N., Inman, D. L. & Graham, N. E. Southern California deep-water wave climate: characterization and application to coastal processes. J. Coast. Res. 24, 1022–1035 (2008).

Article 

Google Scholar
 

Bromirski, P. D., Cayan, D. R., Helly, J. & Wittmann, P. Wave power variability and trends across the North Pacific. J. Geophys. Res. Oceans 118, 6329–6348 (2013).

Article 
ADS 

Google Scholar
 

Yang, S. & Oh, J.-H. Effects of modes of climate variability on wave power during boreal summer in the western North Pacific. Sci. Rep. 10, 5187 (2020).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like Interdecadal Variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

Article 
ADS 

Google Scholar
 

Adusumilli, S. et al. Predicting shoreline changes along the California coast using deep learning applied to satellite observations. J. Geophys. Res. Mach. Learn. Comput. 1, e2024JH000172 (2024).


Google Scholar
 

Warrick, J. A. et al. Shoreline seasonality of California’s beaches. J. Geophys. Res. Earth Surf. 130, e2024JF007836 (2025).

Article 
ADS 

Google Scholar
 

Pérez, J., Méndez, F. J., Menéndez, M. & Losada, I. J. ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dyn. 64, 1181–1191 (2014).

Article 
ADS 

Google Scholar
 

Ludka, B. C., Guza, R. T. & O’Reilly, W. C. Nourishment evolution and impacts at four southern California beaches: a sand volume analysis. Coast. Eng. 136, 96–105 (2018).

Article 

Google Scholar
 

Ludka, B. C. et al. Sixteen years of bathymetry and waves at San Diego beaches. Sci. Data 6, 161 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Ludka, B. C., Young, A. P., Guza, R. T., O’Reilly, W. C. & Merrifield, M. A. Alongshore variability of a southern California beach, before and after nourishment. Coast. Eng. 179, 10423 (2023).

Article 

Google Scholar
 

Behrens, J. et al. Coastal Data Information Program: advances in measuring and modeling wave activity, climate, and extremes. Coast. Eng. J. 66, 3–16 (2024).

Article 

Google Scholar
 

Odériz, I., Silva, R., Mortlock, T. R. & Mori, N. El Niño–Southern Oscillation impacts on global wave climate and potential coastal hazards. J. Geophys. Res. Oceans 125, e2020JC016464 (2020).

Article 
ADS 

Google Scholar
 

Inman, D. L., & Frautschy, J. D. Littoral Processes and the development of shorelines. In Proceedings Coastal Engineering Specialty Conference (ASCE, 1966).

Runyan, K. & Griggs, G. B. The effects of armoring seacliffs on the natural sand supply to the beaches of California. J. Coast. Res. 19, 336–347 (2003).


Google Scholar
 

Patsch, K. & Griggs, G. B. Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline (Institute of Marine Sciences, University of California, Santa Cruz, 2006). https://www.coastal.ca.gov/coastalvoices/resources/2006-LittoralCells.pdf

Slagel, M. J. & Griggs, G. B. Cumulative losses of sand to the California coast by dam impoundment. J. Coast. Res. 24, 571–584 (2008).

Article 

Google Scholar
 

Pawka, S. S. Island shadows in wave directional spectra. J. Geophys. Res. 88, 2579–2591 (1983).

Article 
ADS 

Google Scholar
 

O’Reilly, W. C. & Guza, R. T. A comparison of two spectral wave models in the Southern California Bight. Coast. Eng. 19, 263–282 (1993).

Article 

Google Scholar
 

Kuriyama, Y., Banno, M. & Suzuki, T. Linkages among interannual variations of shoreline, wave and climate at Hasaki, Japan. Geophys. Res. Lett. 39, 2–5 (2012).

Article 

Google Scholar
 

Durrant, T., Greenslade, D., Hemer, M. & Trenham, C. A Global Hindcast focussed on the Central and South Pacific. CAWCR Technical Report (CAWCR, 2014).

Smith, G. A. et al. Global wave hindcast with Australian and Pacific Island focus: From past to present. Geosci. Data J. 1–10 https://doi.org/10.1002/gdj3.104 (2020).

Kumar, A. & Hoerling, M. P. Interpretation and implications of observed inter-El Niño variability. J. Clim. 10, 83–91 (1997).

Article 
ADS 

Google Scholar
 

Christensen, D. F., Hughes, M. G. & Aagaard, T. Wave period and grain size controls on short-wave suspended sediment transport under shoaling and breaking waves. J. Geophys. Res. Earth Surf. 124, 3124–3142 (2019).

Article 
ADS 

Google Scholar
 

Warrick, J. A., Vos, K., Buscombe, D., Ritchie, A. C. & Curtis, J. A. A large sediment accretion wave along a Northern California littoral cell. J. Geophys. Res. Earth Surf. 128, e2023JF007135 (2023).

Article 
ADS 

Google Scholar
 

Davidson, M. A., Turner, I. L., Splinter, K. D. & Harley, M. D. Annual prediction of shoreline erosion and subsequent recovery. Coast. Eng. 130, 14–25 (2017).

Article 

Google Scholar
 

Hemer, M. A., Church, J. A. & Hunter, J. R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 30, 475–491 (2010).

Article 

Google Scholar
 

Trenberth, K. E. et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007).

Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities along U.S. Coastlines. NOAA Technical Report NOS 01. (National Oceanic and Atmospheric Administration, National Ocean Service, 2022), p. 111. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

Yates, M. L., Guza, R. T. & O’Reilly, W. C. Beach shoreline change: Observations and equilibrium modeling. J. Geophys. Res. 114, C09014 (2009).

ADS 

Google Scholar
 

Matsumoto, H., Young, A. P. & Guza, R. T. Observations of surface cobbles at two southern California beaches. Mar. Geol. 419, 106049 (2020a).

Article 

Google Scholar
 

Matsumoto, H., Young, A. P. & Guza, R. T. Cusps and mega cusps on a mixed sediment beach. Earth Space Sci. 7, e2020EA001366 (2020b).

Article 
ADS 

Google Scholar
 

Matsumoto, H. & Young, A. P. Quantitative regional observations of gravel and bedrock influence on beach morphologies. Geomorphology 419, 108491 (2022).

Article 

Google Scholar
 

Siegelman, M. N. et al. Subaerial profiles at two beaches: Equilibrium and machine learning. J. Geophys. Res. Earth Surf. 129, e2023JF007524 (2024).

Article 
ADS 

Google Scholar
 

Castelle, B. et al. Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology 383, https://doi.org/10.1016/j.geomorph.2021.107707 (2021).

O’Reilly, W. C., Olfe, C. B., Thomas, J., Seymour, R. J. & Guza, R. T. The California coastal wave monitoring and prediction system. Coast. Eng. 116, 118–132 (2016).

Article 

Google Scholar
 

Cagigal, L. et al. A multivariate, stochastic, climate-based wave emulator for shoreline change modelling. Ocean Model. 154, 101695 (2020).

Article 

Google Scholar
 

Camus, P. et al. A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dyn. 64, 1025–1038 (2014).

Article 
ADS 

Google Scholar
 

O’Reilly, W. C. et al. Interannual Wave-Driven Shoreline Change on the California Coast [Source Code]. Code Ocean, https://doi.org/10.24433/CO.3917025.v1 (2025).

Shak A. T., Domurat, G. W. & Mitchell, T. E. Emergency response to coastal disasters: the January 17–18, 1988, Southern California storm experience. In Proceedings of Sixth Coastal and Ocean Management Symposium, 2502–2514 (American Society of Engineers, 1989).

Fischer, D. W. Local coastal storm response: the 1988 Redondo Beach Experience. Int. J. Mass Emerg. Disasters 8, 49–59 (1990).

Article 

Google Scholar