Storlazzi, C. D. & Griggs, G. B. Influence of El Niño-Southern Oscillation (ENSO) events on the coastline of central California. J. Coast. Res. SI:26, 146–153 (1998).
Barnard, P. L. et al. The impact of the 2009-10 El Niño Modoki on U.S. West Coast beaches. Geophys. Res. Lett. 38, LI3604 (2011).
Barnard, P. L. et al. Coastal vulnerability across the Pacific dominated by El Niño/Southern Oscillation. Nat. Geosci. 8, 801–807 (2015).
Barnard, P. et al. Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño. Nat. Commun. 8, 14365 (2017).
Doria, A., Guza, R. T., O ‘Reilly, W. C. & Yates, M. L. Observations and modeling of San Diego beaches during El Niño. Cont. Shelf Res. 124, 153–164 (2016).
Young, A. P. et al. Southern California coastal response to the 2015–2016 El Niño. J. Geophys. Res. Earth Surf. 123, 3069–3083 (2018).
Vos, K., Harley, M. D., Turner, I. L. & Splinter, K. D. Pacific shoreline erosion and accretion patterns controlled by El Niño/Southern Oscillation. Nat. Geosci. 16, 140–146 (2023).
Graffin, M. et al. Waterline responses to climate forcing along the North American West Coast. Commun. Earth Environ. 6, 444 (2025).
Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A. & Turner, I. L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 150, 160–174 (2019).
Copernicus Climate Change Service (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS). https://cds.climate.copernicus.eu/cdsapp#!/home (2017).
Vitousek, S., Vos, K., Splinter, K. D., Erikson, L. & Barnard, P. L. A model integrating satellite-derived shoreline observations for predicting fine-scale shoreline response to waves and sea-level rise across large coastal regions. J. Geophys. Res. Earth Surf. 128, e2022JF006936 (2023).
Anderson, D., Ruggiero, P., Antolínez, J. A. A., Méndez, F. J. & Allan, J. A climate index optimized for longshore sediment transport reveals interannual and multidecadal littoral cell rotations. J. Geophys. Res. Earth Surf. 123, 1958–1981 (2018).
Wang, X. L. & Swail, V. R. Changes of extreme wave heights in northern hemisphere oceans and related atmospheric circulation regimes. J. Clim. 14, 2204–2221 (2001).
Adams, P. N., Inman, D. L. & Graham, N. E. Southern California deep-water wave climate: characterization and application to coastal processes. J. Coast. Res. 24, 1022–1035 (2008).
Bromirski, P. D., Cayan, D. R., Helly, J. & Wittmann, P. Wave power variability and trends across the North Pacific. J. Geophys. Res. Oceans 118, 6329–6348 (2013).
Yang, S. & Oh, J.-H. Effects of modes of climate variability on wave power during boreal summer in the western North Pacific. Sci. Rep. 10, 5187 (2020).
Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like Interdecadal Variability: 1900–93. J. Clim. 10, 1004–1020 (1997).
Adusumilli, S. et al. Predicting shoreline changes along the California coast using deep learning applied to satellite observations. J. Geophys. Res. Mach. Learn. Comput. 1, e2024JH000172 (2024).
Warrick, J. A. et al. Shoreline seasonality of California’s beaches. J. Geophys. Res. Earth Surf. 130, e2024JF007836 (2025).
Pérez, J., Méndez, F. J., Menéndez, M. & Losada, I. J. ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dyn. 64, 1181–1191 (2014).
Ludka, B. C., Guza, R. T. & O’Reilly, W. C. Nourishment evolution and impacts at four southern California beaches: a sand volume analysis. Coast. Eng. 136, 96–105 (2018).
Ludka, B. C. et al. Sixteen years of bathymetry and waves at San Diego beaches. Sci. Data 6, 161 (2019).
Ludka, B. C., Young, A. P., Guza, R. T., O’Reilly, W. C. & Merrifield, M. A. Alongshore variability of a southern California beach, before and after nourishment. Coast. Eng. 179, 10423 (2023).
Behrens, J. et al. Coastal Data Information Program: advances in measuring and modeling wave activity, climate, and extremes. Coast. Eng. J. 66, 3–16 (2024).
Odériz, I., Silva, R., Mortlock, T. R. & Mori, N. El Niño–Southern Oscillation impacts on global wave climate and potential coastal hazards. J. Geophys. Res. Oceans 125, e2020JC016464 (2020).
Inman, D. L., & Frautschy, J. D. Littoral Processes and the development of shorelines. In Proceedings Coastal Engineering Specialty Conference (ASCE, 1966).
Runyan, K. & Griggs, G. B. The effects of armoring seacliffs on the natural sand supply to the beaches of California. J. Coast. Res. 19, 336–347 (2003).
Patsch, K. & Griggs, G. B. Littoral Cells, Sand Budgets, and Beaches: Understanding California’s Shoreline (Institute of Marine Sciences, University of California, Santa Cruz, 2006). https://www.coastal.ca.gov/coastalvoices/resources/2006-LittoralCells.pdf
Slagel, M. J. & Griggs, G. B. Cumulative losses of sand to the California coast by dam impoundment. J. Coast. Res. 24, 571–584 (2008).
Pawka, S. S. Island shadows in wave directional spectra. J. Geophys. Res. 88, 2579–2591 (1983).
O’Reilly, W. C. & Guza, R. T. A comparison of two spectral wave models in the Southern California Bight. Coast. Eng. 19, 263–282 (1993).
Kuriyama, Y., Banno, M. & Suzuki, T. Linkages among interannual variations of shoreline, wave and climate at Hasaki, Japan. Geophys. Res. Lett. 39, 2–5 (2012).
Durrant, T., Greenslade, D., Hemer, M. & Trenham, C. A Global Hindcast focussed on the Central and South Pacific. CAWCR Technical Report (CAWCR, 2014).
Smith, G. A. et al. Global wave hindcast with Australian and Pacific Island focus: From past to present. Geosci. Data J. 1–10 https://doi.org/10.1002/gdj3.104 (2020).
Kumar, A. & Hoerling, M. P. Interpretation and implications of observed inter-El Niño variability. J. Clim. 10, 83–91 (1997).
Christensen, D. F., Hughes, M. G. & Aagaard, T. Wave period and grain size controls on short-wave suspended sediment transport under shoaling and breaking waves. J. Geophys. Res. Earth Surf. 124, 3124–3142 (2019).
Warrick, J. A., Vos, K., Buscombe, D., Ritchie, A. C. & Curtis, J. A. A large sediment accretion wave along a Northern California littoral cell. J. Geophys. Res. Earth Surf. 128, e2023JF007135 (2023).
Davidson, M. A., Turner, I. L., Splinter, K. D. & Harley, M. D. Annual prediction of shoreline erosion and subsequent recovery. Coast. Eng. 130, 14–25 (2017).
Hemer, M. A., Church, J. A. & Hunter, J. R. Variability and trends in the directional wave climate of the Southern Hemisphere. Int. J. Climatol. 30, 475–491 (2010).
Trenberth, K. E. et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007).
Sweet, W. V. et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities along U.S. Coastlines. NOAA Technical Report NOS 01. (National Oceanic and Atmospheric Administration, National Ocean Service, 2022), p. 111. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf
Yates, M. L., Guza, R. T. & O’Reilly, W. C. Beach shoreline change: Observations and equilibrium modeling. J. Geophys. Res. 114, C09014 (2009).
Matsumoto, H., Young, A. P. & Guza, R. T. Observations of surface cobbles at two southern California beaches. Mar. Geol. 419, 106049 (2020a).
Matsumoto, H., Young, A. P. & Guza, R. T. Cusps and mega cusps on a mixed sediment beach. Earth Space Sci. 7, e2020EA001366 (2020b).
Matsumoto, H. & Young, A. P. Quantitative regional observations of gravel and bedrock influence on beach morphologies. Geomorphology 419, 108491 (2022).
Siegelman, M. N. et al. Subaerial profiles at two beaches: Equilibrium and machine learning. J. Geophys. Res. Earth Surf. 129, e2023JF007524 (2024).
Castelle, B. et al. Satellite-derived shoreline detection at a high-energy meso-macrotidal beach. Geomorphology 383, https://doi.org/10.1016/j.geomorph.2021.107707 (2021).
O’Reilly, W. C., Olfe, C. B., Thomas, J., Seymour, R. J. & Guza, R. T. The California coastal wave monitoring and prediction system. Coast. Eng. 116, 118–132 (2016).
Cagigal, L. et al. A multivariate, stochastic, climate-based wave emulator for shoreline change modelling. Ocean Model. 154, 101695 (2020).
Camus, P. et al. A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dyn. 64, 1025–1038 (2014).
O’Reilly, W. C. et al. Interannual Wave-Driven Shoreline Change on the California Coast [Source Code]. Code Ocean, https://doi.org/10.24433/CO.3917025.v1 (2025).
Shak A. T., Domurat, G. W. & Mitchell, T. E. Emergency response to coastal disasters: the January 17–18, 1988, Southern California storm experience. In Proceedings of Sixth Coastal and Ocean Management Symposium, 2502–2514 (American Society of Engineers, 1989).
Fischer, D. W. Local coastal storm response: the 1988 Redondo Beach Experience. Int. J. Mass Emerg. Disasters 8, 49–59 (1990).