Mallett, W. J. The Highway Funding Formula: History and Current Status Under the Infrastructure Investment and Jobs Act. Report No. R47922 (Congressional Research Service, 2024).
Office of Boston City Councilor Michelle Wu. Planning for a Boston Green New Deal and Just Recovery. Report No. 8 (Office of Boston City Councilor Michelle Wu, 2020).
Newman, P. & Kenworthy, J. The End of Automobile Dependence: How Cities Are Moving Beyond Car-Based Planning (Island Press, 2015).
Jaramillo, P. et al. Transport (Cambridge Univ. Press, 2022).
City of Boston. Go Boston 2030. (City of Boston, 2022); http://www.boston.gov/departments/transportation/go-boston-2030#report-chapters
City of Los Angeles. Los Angeles Green New Deal Sustainability Plan (City of Los Angeles, 2019); http://plan.mayor.lacity.gov/
RSG. Citywide Mobility Survey Results (NYC Department of Transportation, 2019); http://www.nyc.gov/html/dot/downloads/pdf/nycdot-citywide-mobility-survey-report-2019.pdf
New York City. New York City’s Roadmap to 80× 50 (New York City, 2014); https://www.nyc.gov/assets/sustainability/downloads/pdf/publications/New%20York%20City’s%20Roadmap%20to%2080%20x%2050_Final.pdf
Federal Highway Administration. Summary of Travel Trends: 2017 National Household Travel Survey (Federal Highway Administration, 2017); https://nhts.ornl.gov/assets/2017_nhts_summary_travel_trends.pdf
NYC DOT. Citywide Mobility Survey (NYC DOT, 2022); https://www.nyc.gov/html/dot/html/about/citywide-mobility-survey.shtml
Cooper, C. H. V. et al. Using multiple hybrid spatial design network analysis to predict longitudinal effect of a major city centre redevelopment on pedestrian flows. Transportation 48, 643–672 (2021).
Sevtsuk, A. et al. We shape our buildings, but do they then shape us? A longitudinal analysis of pedestrian flows and development activity in Melbourne. PLoS ONE 16, e0257534 (2021).
Sevtsuk, A. et al. Pedestrian-oriented development in Beirut: a framework for estimating urban design impacts on pedestrian flows through modeling, participatory design, and scenario analysis. Cities 150, 104927 (2024).
Zhang, Q. et al. Moped meets MITO: a hybrid modeling framework for pedestrian travel demand. Transportation 50, 1139–1165 (2023).
Miranda-Moreno, L. F. et al. Modeling of pedestrian activity at signalized intersections: land use, urban form, weather, and spatiotemporal patterns. Transp. Res. Rec.: J. Transp. Res. Board 2264, 74–82 (2011).
Pont, M. et al. Development of urban types based on network centrality, built density and their impact on pedestrian movement. Environ. Plan. B: Urban Anal. City Sci. 46, 1549–1564 (2019).
Bolin, D. et al. Functional ANOVA modelling of pedestrian counts on streets in three European cities. J. R. Stat. Soc. A 184, 1176–1198 (2021).
Batty, M. Agent-Based Pedestrian Modelling (ESRI Press, 2003).
PTV. Pedestrians’ big debut in traffic simulation: from bit player to main character. PTV Compass 1, 4–8 (2008).
Axhausen, K. The Multi-Agent Transport Simulation MATSim (MATSim.org, 2016).
Puusepp, R. et al. in Advances in Simulation 547–557 (Springer, 2018).
Clifton, K. J., Singleton, P. A., Muhs, C. D. & Schneider, R. J. Representing pedestrian activity in travel demand models: framework and application. J. Transp. Geogr. 52, 111–122 (2016).
Cooper, C. H. V. et al. sDNA: 3-D spatial network analysis for GIS, CAD, command line & Python. SoftwareX 12, 100525 (2020).
Sevtsuk, A. & Kalvo, R. Modeling pedestrian activity in cities with urban network analysis. Environ. Plan. B: Urban Anal. City Sci. 52, 6 (2024a).
Sevtsuk, A. et al. Madina Python package: scalable urban network analysis for modeling pedestrian and bicycle trips in cities. J. Transp. Geogr. 123, 104130 (2025).
Zafri, N. & Sevtsuk, A. Advancing pedestrian models: a comparative review and vision for the future. J. Am. Plann. Assoc. (in the press).
Turner, S. M. et al. Guide for Scalable Risk Assessment Methods for Pedestrians and Bicyclists (United States Department of Transportation, 2018); https://rosap.ntl.bts.gov/view/dot/43673
Jang, K. et al. Evaluation of pedestrian safety. Transp. Res. Rec.: J. Transp. Res. Board 2393, 104–116 (2013).
Stipancic, J., Miranda-Moreno, L., Strauss, J. & Labbe, A. urélie Pedestrian safety at signalized intersections: modelling spatial effects of exposure, geometry and signalization on a large urban network. Accid. Anal. Prev. 134, 105265 (2020).
Dobler, G., Vani, J. & Dam, T. T. L. Patterns of urban foot traffic dynamics. Comput. Environ. Urban Syst. 89, 101674 (2021).
Angel, A. & Plaut, P. Tempo-spatial analysis of pedestrian movement in the built environment based on crowdsourced big data. Cities 149, 104917 (2024).
Wang, X. et al. Predicting the city foot traffic with pedestrian sensor data. In Proc. 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services 1–10 (ACM, 2017).
Sevtsuk, A. Estimating pedestrian flows on street networks: revisiting the betweenness index. J. Am. Plan. Assoc. 87, 512–526 (2021).
Sevtsuk, A. & Kalvo, R. Modeling pedestrian activity in cities with urban network analysis. Environ. Plan. B: Urban Anal. City Sci. 52, 6 (2024b).
Ortúzar, J. de Dios et al. Modelling Transport 4th edn (Wiley, 2011).
Norton, P. D. Street rivals: jaywalking and the invention of the motor age street. Technol. Cult. 48, 331–359 (2007).
Erhardt, G. D. et al. Traffic Forecasting Accuracy Assessment Research (Transportation Research Board, 2020); https://doi.org/10.17226/25637
NYC DOT. Pedestrian Mobility Plan: Pedestrian Demand (NYC DOT, 2020); https://www.nyc.gov/html/dot/html/pedestrians/pedestrian-mobility.shtml
New York City. Vision Zero: Building a Safer City (New York City, 2023); https://www.nyc.gov/content/visionzero/pages/.
NYC DOT. Vision Zero View (NYC DOT, 2025); https://vzv.nyc.
NYC DOT. Motor Vehicle Collisions—Crashes (NYC DOT, 2025); https://data.cityofnewyork.us/Public-Safety/Motor-Vehicle-Collisions-Crashes/h9gi-nx95/about_data
Sevtsuk, A. et al. The role of turns in pedestrian route choice: a clarification. J. Transp. Geogr. 104, 103392 (2022).
Colaninno, N. et al. A sidewalk-level urban heat risk assessment framework using pedestrian mobility and urban microclimate modeling. Environ. Plan. B: Urban Anal. City Sci. 52, 1071–1090 (2025).
Institute of Transportation Engineers. Trip Generation Handbook 3rd edn (Institute of Transportation Engineers, 2016).
Huff, D. A probabilistic analysis of shopping center trade areas. Land Econ. 39, 81–90 (1963).
Bongiorno, C. et al. Vector-based pedestrian navigation in cities. Nat. Comput. Sci. 1, 678–685 (2021).
Pushkarev, B. et al. Urban Space for Pedestrians (MIT Press, 1975).
Sevtsuk, A., Basu, R., Li, X. & Kalvo, R. A big data approach to understanding pedestrian route choice preferences—evidence from San Francisco. Travel Behav. Soc. 25, 41–51 (2021b).
Basu, R. & Sevtsuk, A. How do street attributes affect willingness-to-walk? City-wide pedestrian route choice analysis using big data from Boston and San Francisco. Transport. Res. A 163, 1–19 (2022).
Basu, R., Colaninno, N., Alhassan, A. & Sevtsuk, A. Hot and bothered: exploring the effect of heat on pedestrian route choice behavior and accessibility. Cities 155, 105435 (2024).
NYC DOT. Transportation Information Management System (NYC DOT, 2019); https://dottims.nyc.gov/homepage
US Census Bureau. Census Data 2020 (US Census Bureau, 2020); https://data.census.gov/all?q=NYC%20Census%20blocks
Infogroup. Infogroup US Historical Business Data 2022 (Harvard Dataverse, 2022); https://doi.org/10.7910/DVN/GW2P3G/VPA2UC
NYC Open Data. School Point Locations (NYC Open Data, 2019); https://data.cityofnewyork.us/Education/School-Point-Locations/jfju-ynrr/about_data
MTA. NYC Subway Entrances and Exits (MTA, 2024); https://data.ny.gov/Transportation/MTA-Subway-Entrances-and-Exits-2024/i9wp-a4ja/about_data
NYC Open Data. Parks Properties (NYC Open Data, 2023); https://data.cityofnewyork.us/Recreation/Parks-Properties/enfh-gkve/about_data
NYC DOT. LION (NYC DOT, 2025); https://www.nyc.gov/content/planning/pages/resources/datasets/lion
United States Census Bureau. 2019 TIGER/Line® Shapefiles: Block Groups (United States Census Bureau, 2020); https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2019&layergroup=Block+Groups
Griswold, J. B., Medury, A., Schneider, R. J. & Grembek, O. Comparison of pedestrian count expansion methods: land use groups versus empirical clusters. Transp. Res. Rec.: J. Transp. Res. Board 2672, 87–97 (2018).
Le, M., Geedipally, S. R., Fitzpatrick, K. & Avelar, R. E. Estimating pedestrian volumes for signalized and stop-controlled intersections. Transp. Res. Rec.: J. Transp. Res. Board 2674, 799–808 (2020).
Lee, C. et al. Correlates of walking for transportation or recreation purposes. J. Phys. Act. Health 3, S77–S98 (2006).