Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929).

ADS 

Google Scholar
 

Zener, C. A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. Ser. A 145, 523–529 (1934).

ADS 

Google Scholar
 

Feldmann, J. et al. Optical investigation of Bloch oscillations in a semiconductor superlattice. Phys. Rev. B 46, 7252 (1992).

ADS 

Google Scholar
 

Ben Dahan, M., Peik, E., Reichel, J., Castin, Y. & Salomon, C. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. 76, 4508 (1996).

ADS 

Google Scholar
 

Wilkinson, S., Bharucha, C., Madison, K., Niu, Q. & Raizen, M. Observation of atomic Wannier-Stark ladders in an accelerating optical potential. Phys. Rev. Lett. 76, 4512 (1996).

ADS 

Google Scholar
 

Geiger, Z. et al. Observation and uses of position-space Bloch oscillations in an ultracold gas. Phys. Rev. Lett. 120, 213201 (2018).

ADS 

Google Scholar
 

Ferrari, G., Poli, N., Sorrentino, F. & Tino, G. Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett. 97, 060402 (2006).

ADS 

Google Scholar
 

Xu, V. et al. Probing gravity by holding atoms for 20 seconds. Science 366, 745–749 (2019).

ADS 

Google Scholar
 

Parker, R., Yu, C., Zhong, W., Estey, B. & Müller, H. Measurement of the fine-structure constant as a test of the Standard Model. Science 360, 191–195 (2018).

ADS 
MathSciNet 

Google Scholar
 

Morel, L., Yao, Z., Cladé, P. & Guellati-Khélifa, S. Determination of the fine-structure constant with an accuracy of 81 parts per trillion. Nature 588, 61–65 (2020).

ADS 

Google Scholar
 

Price, H. & Cooper, N. Mapping the Berry curvature from semiclassical dynamics in optical lattices. Phys. Rev. A 85, 033620 (2012).

ADS 

Google Scholar
 

Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).


Google Scholar
 

Pertsch, T., Dannberg, P., Elflein, W., Bräuer, A. & Lederer, F. Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett. 83, 4752 (1999).

ADS 

Google Scholar
 

Morandotti, R., Peschel, U., Aitchison, J. S., Eisenberg, H. & Silberberg, Y. Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett. 83, 4756 (1999).

ADS 

Google Scholar
 

Sanchis-Alepuz, H., Kosevich, Y. & Sánchez-Dehesa, J. Acoustic analogue of electronic Bloch oscillations and resonant Zener tunneling in ultrasonic superlattices. Phys. Rev. Lett. 98, 134301 (2007).

ADS 

Google Scholar
 

Block, A. et al. Bloch oscillations in plasmonic waveguide arrays. Nat. Commun. 5, 3843 (2014).

ADS 

Google Scholar
 

Morsch, O., Müller, J. H., Cristiani, M., Ciampini, D. & Arimondo, E. Bloch oscillations and mean-field effects of Bose-Einstein condensates in 1D optical lattices. Phys. Rev. Lett. 87, 140402 (2001).

ADS 

Google Scholar
 

Gustavsson, M. et al. Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett. 100, 080404 (2008).

ADS 

Google Scholar
 

Eckstein, M. & Werner, P. Damping of Bloch oscillations in the Hubbard model. Phys. Rev. Lett. 107, 186406 (2011).

ADS 

Google Scholar
 

Meinert, F. et al. Interaction-induced quantum phase revivals and evidence for the transition to the quantum chaotic regime in 1D atomic Bloch oscillations. Phys. Rev. Lett. 112, 193003 (2014).

ADS 

Google Scholar
 

Preiss, P. et al. Strongly correlated quantum walks in optical lattices. Science 347, 1229–1233 (2015).

ADS 
MathSciNet 

Google Scholar
 

Corrielli, G., Crespi, A., Della Valle, G., Longhi, S. & Osellame, R. Fractional Bloch oscillations in photonic lattices. Nat. Commun. 4, 1555 (2013).

ADS 

Google Scholar
 

Zhang, W. et al. Observation of Bloch oscillations dominated by effective anyonic particle statistics. Nat. Commun. 13, 2392 (2022).

ADS 

Google Scholar
 

Bloch, F. Superfluidity in a ring. Phys. Rev. A 7, 2187 (1973).

ADS 

Google Scholar
 

Haldane, F. Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum fluids. Phys. Rev. Lett. 47, 1840 (1981).

ADS 

Google Scholar
 

Gangardt, D. & Kamenev, A. Bloch oscillations in a one-dimensional spinor gas. Phys. Rev. Lett. 102, 070402 (2009).

ADS 

Google Scholar
 

Schecter, M., Gangardt, D. & Kamenev, A. Dynamics and Bloch oscillations of mobile impurities in one-dimensional quantum liquids. Ann. Phys. 327, 639–670 (2012).

ADS 

Google Scholar
 

Pitaevskii, L. On the momentum of solitons and vortex rings in a superfluid. J. Exp. Theor. Phys. 119, 1097 (2014).

ADS 

Google Scholar
 

Grusdt, F., Shashi, A., Abanin, D. & Demler, E. Bloch oscillations of bosonic lattice polarons. Phys. Rev. A 90, 063610 (2014).

ADS 

Google Scholar
 

Will, M. & Fleischhauer, M. Dynamics of polaron formation in 1D Bose gases in the strong-coupling regime. New J. Phys. 25, 083043 (2023).

ADS 
MathSciNet 

Google Scholar
 

Schecter, M., Gangardt, D. & Kamenev, A. Quantum impurities: from mobile Josephson junctions to depletons. New J. Phys. 18, 065002 (2016).

ADS 

Google Scholar
 

Petković, A. & Ristivojevic, Z. Dynamics of a mobile impurity in a one-dimensional Bose liquid. Phys. Rev. Lett. 117, 105301 (2016).

ADS 

Google Scholar
 

Meinert, F. et al. Bloch oscillations in the absence of a lattice. Science 356, 945–948 (2017).

ADS 

Google Scholar
 

Zhao, L.-C. et al. Spin soliton with a negative-positive mass transition. Phys. Rev. A 101, 043621 (2020).

ADS 
MathSciNet 

Google Scholar
 

Yu, X. & Blakie, P. Propagating ferrodark solitons in a superfluid: exact solutions and anomalous dynamics. Phys. Rev. Lett. 128, 125301 (2022).

ADS 
MathSciNet 

Google Scholar
 

Bresolin, S., Roy, A., Ferrari, G., Recati, A. & Pavloff, N. Oscillating solitons and ac Josephson effect in ferromagnetic Bose-Bose mixtures. Phys. Rev. Lett. 130, 220403 (2023).

ADS 

Google Scholar
 

Meng, L.-Z., Luo, X.-W. & Zhao, L.-C. Self-adapted Josephson oscillation of dark-bright solitons under constant forces. Preprint at https://arxiv.org/abs/2501.15841 (2025).

Kosevich, A., Ivanov, B. & Kovalev, A. Magnetic solitons. Phys. Rep. 194, 117 (1990).

ADS 

Google Scholar
 

Qu, C., Pitaevskii, L. & Stringari, S. Magnetic solitons in a binary Bose-Einstein condensate. Phys. Rev. Lett. 116, 160402 (2016).

ADS 

Google Scholar
 

Congy, T., Kamchatnov, A. & Pavloff, N. Dispersive hydrodynamics of nonlinear polarization waves in two-component Bose–Einstein condensates. SciPost Phys. 1, 006 (2016).

ADS 

Google Scholar
 

Chai, X. et al. Magnetic solitons in a spin-1 Bose-Einstein condensate. Phys. Rev. Lett. 125, 030402 (2020).

ADS 

Google Scholar
 

Farolfi, A., Trypogeorgos, D., Mordini, C., Lamporesi, G. & Ferrari, G. Observation of magnetic solitons in two-component Bose-Einstein condensates. Phys. Rev. Lett. 125, 030401 (2020).

ADS 

Google Scholar
 

Chai, X., You, L. & Raman, C. Magnetic solitons in an immiscible two-component Bose-Einstein condensate. Phys. Rev. A 105, 013313 (2022).

ADS 
MathSciNet 

Google Scholar
 

Zou, Y.-Q. et al. Optical control of the density and spin spatial profiles of a planar Bose gas. J. Phys. B 54, 08LT01 (2021).


Google Scholar
 

Kosevich, A. Bloch oscillations of magnetic solitons as an example of dynamical localization of quasiparticles in a uniform external field. Low Temp. Phys. 27, 513–541 (2001).

ADS 

Google Scholar
 

Pitaevskii, L. & Stringari, S. Bose-Einstein Condensation and Superfluidity (Oxford Univ. Press, 2016).

Isoshima, T., Nakahara, M., Ohmi, T. & Machida, K. Creation of a persistent current and vortex in a Bose-Einstein condensate of alkali-metal atoms. Phys. Rev. A 61, 063610 (2000).

ADS 

Google Scholar
 

Leanhardt, A. et al. Imprinting vortices in a Bose-Einstein condensate using topological phases. Phys. Rev. Lett. 89, 190403 (2002).

ADS 

Google Scholar
 

Wright, K., Blakestad, R., Lobb, C., Phillips, W. & Campbell, G. Driving phase slips in a superfluid atom circuit with a rotating weak link. Phys. Rev. Lett. 110, 025302 (2013).

ADS 

Google Scholar
 

Corman, L. et al. Quench-induced supercurrents in an annular Bose gas. Phys. Rev. Lett. 113, 135302 (2014).

ADS 

Google Scholar
 

Eckel, S., Jendrzejewski, F., Kumar, A., Lobb, C. & Campbell, G. Interferometric measurement of the current-phase relationship of a superfluid weak link. Phys. Rev. X 4, 031052 (2014).


Google Scholar
 

Hamner, C., Chang, J., Engels, P. & Hoefer, M. Generation of dark-bright soliton trains in superfluid-superfluid counterflow. Phys. Rev. Lett. 106, 065302 (2011).

ADS 

Google Scholar
 

Yan, D. et al. Multiple dark-bright solitons in atomic Bose-Einstein condensates. Phys. Rev. A 84, 053630 (2011).

ADS 

Google Scholar
 

Kuramoto, Y. & Battogtokh, D. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst. 5, 380–385 (2002).


Google Scholar
 

Amico, L. et al. Colloquium: atomtronic circuits: from many-body physics to quantum technologies. Rev. Mod. Phys. 94, 041001 (2022).

ADS 

Google Scholar
 

Li, X.-L., Gong, M., Wang, Y.-H. & Zhao, L.-C. Manipulating topological charges via engineering zeros of wave functions. Preprint at https://arxiv.org/abs/2412.07101 (2024).

Ville, J. et al. Loading and compression of a single two-dimensional Bose gas in an optical accordion. Phys. Rev. A 95, 013632 (2017).

ADS 

Google Scholar
 

Bakkali-Hassani, B. et al. Realization of a Townes soliton in a two-component planar Bose gas. Phys. Rev. Lett. 127, 023603 (2021).

ADS 

Google Scholar
 

Lieb, E. H. & Liniger, W. Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130, 1605 (1963).

ADS 
MathSciNet 

Google Scholar
 

van Kempen, E., Kokkelmans, S., Heinzen, D. & Verhaar, B. Interisotope determination of ultracold rubidium interactions from three high-precision experiments. Phys. Rev. Lett. 88, 093201 (2002).

ADS 

Google Scholar
 

Zou, Y.-Q. et al. Magnetic dipolar interaction between hyperfine clock states in a planar alkali Bose gas. Phys. Rev. Lett. 125, 233604 (2020).

ADS 

Google Scholar
 

De, S. et al. Quenched binary Bose-Einstein condensates: spin-domain formation and coarsening. Phys. Rev. A 89, 033631 (2014).

ADS 

Google Scholar
 

Aidelsburger, M. et al. Relaxation dynamics in the merging of N independent condensates. Phys. Rev. Lett. 119, 190403 (2017).

ADS 

Google Scholar