Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885–944 (2012).

ADS 

Google Scholar
 

Fumagalli, L. et al. Anomalously low dielectric constant of confined water. Science 360, 1339–1342 (2018).

ADS 

Google Scholar
 

Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).


Google Scholar
 

Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

ADS 

Google Scholar
 

Petrenko, V. F. & Whitworth, R. W. Physics of Ice (OUP Oxford, 1999).

Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019).

ADS 

Google Scholar
 

Rosu-Finsen, A. et al. Medium-density amorphous ice. Science 379, 474–478 (2023).

ADS 

Google Scholar
 

Xu, P. et al. Elastic ice microfibers. Science 373, 187–192 (2021).

ADS 

Google Scholar
 

Saunders, C. in Planetary Atmospheric Electricity (eds LeBlanc, F. et al.) 335–353 (Springer, 2008); https://doi.org/10.1007/978-0-387-87664-1_22

Dash, J. G., Rempel, A. W. & Wettlaufer, J. S. The physics of premelted ice and its geophysical consequences. Rev. Mod. Phys. 78, 695–741 (2006).

ADS 

Google Scholar
 

Thiel, D. V. Electromagnetic emission (EME) from ice crack formation: preliminary observations. Cold Reg. Sci. Technol. 21, 49–60 (1992).


Google Scholar
 

Fifolt, D. A., Petrenko, V. F. & Schulson, E. M. Preliminary study of electromagnetic emissions from cracks in ice. Philos. Mag. B 67, 289–299 (1993).

ADS 

Google Scholar
 

Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu Rev. Mater. Sci. 43, 387–421 (2013).

ADS 

Google Scholar
 

Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

ADS 

Google Scholar
 

Deng, Q., Liu, L. P. & Sharma, P. Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014).

ADS 
MathSciNet 

Google Scholar
 

Narvaez, J., Vasquez-Sancho, F. & Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016).

ADS 

Google Scholar
 

Yang, M. M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).

ADS 

Google Scholar
 

Vasquez-Sancho, F., Abdollahi, A., Damjanovic, D. & Catalan, G. Flexoelectricity in bones. Adv. Mater. 30, 1705316 (2018).


Google Scholar
 

Shu, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020).

ADS 

Google Scholar
 

Torbati, M., Mozaffari, K., Liu, L. & Sharma, P. Coupling of mechanical deformation and electromagnetic fields in biological cells. Rev. Mod. Phys. 94, 025003 (2022).

ADS 
MathSciNet 

Google Scholar
 

Peng, W. et al. Flexoelectric polarizing and control of a ferromagnetic metal. Nat. Phys. 20, 450–455 (2024).


Google Scholar
 

Slater, B. & Michaelides, A. Surface premelting of water ice. Nat. Rev. Chem. 3, 172–188 (2019).


Google Scholar
 

Ribeiro, I. D. A. & Koning, M. D. Grain-boundary sliding in ice Ih: tribology and rheology at the nanoscale. J. Phys. Chem. C 125, 627–634 (2021).


Google Scholar
 

Ma, Q., Wen, X., Lv, L., Deng, Q. & Shen, S. On the flexoelectric-like effect of Nb-doped SrTiO3 single crystals. Appl. Phys. Lett. 123, 082902 (2023).

ADS 

Google Scholar
 

Zubko, P., Catalan, G., Buckley, A., Welche, P. R. & Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99, 167601 (2007).

ADS 

Google Scholar
 

Vales-Castro, P. et al. Flexoelectricity in antiferroelectrics. Appl. Phys. Lett. https://doi.org/10.1063/1.5044724 (2018).

Ma, W. & Cross, L. E. Flexoelectricity of barium titanate. Appl Phys. Lett. 88, 232902 (2006).

ADS 

Google Scholar
 

Narvaez, J. & Catalan, G. Origin of the enhanced flexoelectricity of relaxor ferroelectrics. Appl. Phys. Lett. https://doi.org/10.1063/1.4871686 (2014).

Mishima, O., Calvert, L. & Whalley, E. ‘Melting ice’I at 77 K and 10 kbar: a new method of making amorphous solids. Nature 310, 393–395 (1984).

ADS 

Google Scholar
 

Garg, A. K. High-pressure Raman spectroscopic study of the ice Ih → ice IX phase transition. Phys. Status Solidi a 110, 467–480 (1988).

ADS 

Google Scholar
 

Su, X. C., Lianos, L., Shen, Y. R. & Somorjai, G. A. Surface-induced ferroelectric ice on Pt(111). Phys. Rev. Lett. 80, 1533–1536 (1998).

ADS 

Google Scholar
 

Sugimoto, T., Aiga, N., Otsuki, Y., Watanabe, K. & Matsumoto, Y. Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film. Nat. Phys. 12, 1063–1068 (2016).


Google Scholar
 

Aiga, N., Sugimoto, T., Otsuki, Y., Watanabe, K. & Matsumoto, Y. Origins of emergent high-Tc ferroelectric ordering in heteroepitaxial ice films: sum-frequency generation vibrational spectroscopy of H2O and D2O ice films on Pt(111). Phys. Rev. B https://doi.org/10.1103/PhysRevB.97.075410 (2018).

Shen, S. & Hu, S. A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010).

ADS 
MathSciNet 

Google Scholar
 

Tagantsev, A. K. & Yurkov, A. S. Flexoelectric effect in finite samples. J. Appl. Phys. 112, 044103 (2012).

ADS 

Google Scholar
 

Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014).

ADS 

Google Scholar
 

Narvaez, J., Saremi, S., Hong, J., Stengel, M. & Catalan, G. Large flexoelectric anisotropy in paraelectric barium titanate. Phys. Rev. Lett. 115, 037601 (2015).

ADS 

Google Scholar
 

Martí, X. et al. Skin layer of BiFeO3 single crystals. Phys. Rev. Lett. 106, 236101 (2011).

ADS 

Google Scholar
 

Zhang, X. et al. Large flexoelectriclike response from the spontaneously polarized surfaces in ferroelectric ceramics. Phys. Rev. Lett. 121, 057602 (2018).

ADS 

Google Scholar
 

Pan, D. et al. Surface energy and surface proton order of ice Ih. Phys. Rev. Lett. 101, 155703 (2008).

ADS 

Google Scholar
 

Michaelson, H. B. The work function of the elements and its periodicity. J. Appl. Phys. 48, 4729–4733 (1977).

ADS 

Google Scholar
 

Buser, O. & Aufdermaur, A. in Electrical Processes in Atmospheres (eds Dolezalek, H., Reiter, R. & Landsberg, H. E.) 294–301 (Springer, 1976).

Mazzega, E., del Pennino, U., Loria, A. & Mantovani, S. Volta effect and liquidlike layer at the ice surface. J. Chem. Phys. 64, 1028–1031 (1976).

ADS 

Google Scholar
 

Batra, I. P. & Kleinman, L. Chemisorption of oxygen on aluminum surfaces. J. Electron Spectrosc. Relat. Phenom. 33, 175–241 (1984).

ADS 

Google Scholar
 

Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter https://doi.org/10.1088/0953-8984/20/02/021001 (2008).

Pedroza, L. S., Poissier, A. & Fernandez-Serra, M. V. Local order of liquid water at metallic electrode surfaces. J. Chem. Phys. 142, 034706 (2015).

ADS 

Google Scholar
 

Sugimoto, T. & Matsumoto, Y. Orientational ordering in heteroepitaxial water ice on metal surfaces. Phys. Chem. Chem. Phys. 22, 16453–16466 (2020).


Google Scholar
 

Poissier, A., Ganeshan, S. & Fernandez-Serra, M. The role of hydrogen bonding in water–metal interactions. Phys. Chem. Chem. Phys. 13, 3375–3384 (2011).


Google Scholar
 

Mizzi, C. A., Lin, A. Y. W. & Marks, L. D. Does flexoelectricity drive triboelectricity? Phys. Rev. Lett. 123, 116103 (2019).

ADS 

Google Scholar
 

Mizzi, C. A. & Marks, L. D. When flexoelectricity drives triboelectricity. Nano Lett. 22, 3939–3945 (2022).

ADS 

Google Scholar
 

Qiao, H. et al. Mixed triboelectric and flexoelectric charge transfer at the nanoscale. Adv. Sci. 8, 2101793 (2021).


Google Scholar
 

Kumar, M., Lim, J., Park, J.-Y. & Seo, H. Flexoelectric effect driven colossal triboelectricity with multilayer graphene. Curr. Appl. Phys. 32, 59–65 (2021).

ADS 

Google Scholar
 

Lin, S., Zheng, M., Xu, L., Zhu, L. & Wang, Z. L. Electron transfer driven by tip-induced flexoelectricity in contact electrification. J. Phys. D 55, 315502 (2022).

ADS 

Google Scholar
 

Olson, K. P. & Marks, L. D. What puts the ‘tribo’ in triboelectricity? Nano Lett. 24, 12299–12306 (2024).


Google Scholar
 

Sobarzo, J. C. et al. Spontaneous ordering of identical materials into a triboelectric series. Nature 638, 664–669 (2025).


Google Scholar
 

Milbrandt, J. A. & Morrison, H. Prediction of graupel density in a bulk microphysics scheme. J. Atmos. Sci. 70, 410–429 (2013).

ADS 

Google Scholar
 

Wettlaufer, J. S. & Dash, J. G. Melting below zero. Sci. Am. 282, 50–53 (2000).


Google Scholar
 

Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 35, 1536–1548 (1978).

ADS 

Google Scholar
 

Gaskell, W. & Illingworth, A. Charge transfer accompanying individual collisions between ice particles and its role in thunderstorm electrification. Q. J. R. Meteorol. Soc. 106, 841–854 (1980).

ADS 

Google Scholar
 

Williams, E. R. The tripole structure of thunderstorms. J. Geophys. Res. Atmos. 94, 13151–13167 (1989).

ADS 

Google Scholar
 

Jayaratne, E., Saunders, C. & Hallett, J. Laboratory studies of the charging of soft-hail during ice crystal interactions. Q. J. R. Meteorol. Soc. 109, 609–630 (1983).

ADS 

Google Scholar
 

Keith, W. & Saunders, C. The effect of centrifugal acceleration on the charging of a riming hailstone. Meteorol. Atmos. Phys. 41, 55–61 (1989).

ADS 

Google Scholar
 

Caranti, G., Avila, E. & Ré, M. Charge transfer during individual collisions in ice growing from vapor deposition. J. Geophys. Res. Atmos. 96, 15365–15375 (1991).

ADS 

Google Scholar
 

Avila, E. E. & Caranti, G. M. A laboratory study of static charging by fracture in ice growing by riming. J. Geophys. Res. Atmos. 99, 10611–10620 (1994).

ADS 

Google Scholar
 

Pereyra, R. G. & Avila, E. E. Charge transfer measurements during single ice crystal collisions with a target growing by riming. J. Geophys. Res. Atmos. 107, AAC 23-21-AAC 23-29 (2002).

Luque, M. Y., Nollas, F., Pereyra, R. G., Bürgesser, R. E. & Ávila, E. E. Charge separation in collisions between ice crystals and a spherical simulated graupel of centimeter size. J. Geophys. Res. Atmos. 125, e2019JD030941 (2020).

ADS 

Google Scholar
 

Gaskell, W. Field and Laboratory Studies of Precipitation Charges (Univ. Manchester, 1979).

Pamuk, B., Allen, P. B. & Fernández-Serra, M. V. Electronic and nuclear quantum effects on the ice XI/ice Ih phase transition. Phys. Rev. B 92, 134105 (2015).

ADS 

Google Scholar
 

Dash, J. & Wettlaufer, J. The surface physics of ice in thunderstorms. Can. J. Phys. 81, 201–207 (2003).

ADS 

Google Scholar
 

Ordejón, P., Artacho, E. & Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 53, R10441 (1996).

ADS 

Google Scholar
 

Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745 (2002).

ADS 

Google Scholar
 

Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

ADS 

Google Scholar
 

Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

ADS 

Google Scholar
 

Wang, J., Román-Pérez, G., Soler, J. M., Artacho, E. & Fernández-Serra, M.-V. Density, structure, and dynamics of water: the effect of van der Waals interactions. J. Chem. Phys. 134, 024516 (2011).

ADS 

Google Scholar
 

Pamuk, B. et al. Anomalous nuclear quantum effects in ice. Phys. Rev. Lett. 108, 193003 (2012).

ADS 

Google Scholar
 

Wen, X. et al. Flexoelectricity and surface ferroelectricity of water ice. figshare https://doi.org/10.6084/m9.figshare.29378186 (2025).