Lyons, T. W. et al. Co‐evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).


Google Scholar
 

Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).

ADS 

Google Scholar
 

Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).


Google Scholar
 

Kasting, J. F. Earth’s early atmosphere. Science 259, 920–926 (1993).

ADS 

Google Scholar
 

Des Marais, D. J., Strauss, H., Summons, R. E. & Hayes, J. M. Carbon isotope evidence for the stepwise oxidation of the Proterozoic environment. Nature 359, 605–609 (1992).

ADS 

Google Scholar
 

Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth Sci. Rev. 110, 26–57 (2012).

ADS 

Google Scholar
 

Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).

ADS 

Google Scholar
 

Wallace, M. W. et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 466, 12–19 (2017).

ADS 

Google Scholar
 

Lu, W. et al. Late inception of a resiliently oxygenated upper ocean. Science 5372, eaar5372 (2018).


Google Scholar
 

Liu, X.-M. et al. Tracing Earth’s O2 evolution using Zn/Fe ratios in marine carbonates. Geochem. Perspect. Lett. 2, 24–34 (2016).


Google Scholar
 

Pogge Von Strandmann, P. A. E. et al. Selenium isotope evidence for progressive oxidation of the Neoproterozoic biosphere. Nat. Commun. 6, 10157 (2015).

ADS 

Google Scholar
 

Dahl, T. W. et al. Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc. Natl Acad. Sci. USA 107, 17911–17915 (2010).

ADS 

Google Scholar
 

Stolper, D. A. & Keller, C. B. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts. Nature 553, 323–327 (2018).

ADS 

Google Scholar
 

Stockey, R. G. et al. Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).


Google Scholar
 

Krause, A. J., Mills, B. J. W. W., Merdith, A. S., Lenton, T. M. & Poulton, S. W. Extreme variability in atmospheric oxygen levels in the late Precambrian. Sci. Adv. 8, eabm8191 (2022).


Google Scholar
 

Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).

ADS 

Google Scholar
 

Bao, H. Sulfate: a time capsule for Earth’s O2, O3, and H2O. Chem. Geol. 395, 108–118 (2015).

ADS 

Google Scholar
 

Planavsky, N. J., Reinhard, C. T., Isson, T. T., Ozaki, K. & Crockford, P. W. Large mass-independent oxygen isotope fractionations in mid-Proterozoic sediments: evidence for a low-oxygen atmosphere? Astrobiology 20, 628–636 (2020).

ADS 

Google Scholar
 

Cao, X. & Bao, H. Dynamic model constraints on oxygen-17 depletion in atmospheric O2 after a snowball Earth. Proc. Natl Acad. Sci. USA 110, 14546–14550 (2013).

ADS 

Google Scholar
 

Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).

ADS 

Google Scholar
 

Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

ADS 

Google Scholar
 

Uveges, B. T., Izon, G., Ono, S., Beukes, N. J. & Summons, R. E. Reconciling discrepant minor sulfur isotope records of the Great Oxidation Event. Nat. Commun. 14, 1–12 (2023).


Google Scholar
 

Mitchell, R. N., Feng, L., Zhang, Z. & Peng, P. Carbonate-organic decoupling during the first Neoproterozoic carbon isotope excursion. Innov. Geosci. 1, 100046 (2023).


Google Scholar
 

Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

ADS 

Google Scholar
 

Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).

ADS 

Google Scholar
 

Ye, Q. et al. The survival of benthic macroscopic phototrophs on a Neoproterozoic snowball Earth. Geology 43, 507–510 (2015).

ADS 

Google Scholar
 

Darroch, S. A. F., Smith, E. F., Laflamme, M. & Erwin, D. H. Ediacaran extinction and Cambrian explosion. Trends Ecol. Evol. 33, 653–663 (2018).


Google Scholar
 

Catling, D. C. & Zahnle, K. J. The Archean atmosphere. Sci. Adv. 6, eaax1420 (2020).

ADS 

Google Scholar
 

Turner, E. C. & Bekker, A. Thick sulfate evaporite accumulations marking a mid-Neoproterozoic oxygenation event (Ten Stone Formation, Northwest Territories, Canada). Geol. Soc. Am Bull. 128, B31268.1 (2015).

Reinhard, C. T. & Planavsky, N. J. The history of ocean oxygenation. Ann. Rev. Mar. Sci. 14, 331–353 (2022).


Google Scholar
 

Wang, H. et al. A benthic oxygen oasis in the early Neoproterozoic ocean. Precambrian Res. 355, 106085 (2021).


Google Scholar
 

Wang, H. et al. Spatiotemporal redox heterogeneity and transient marine shelf oxygenation in the Mesoproterozoic ocean. Geochim. Cosmochim. Acta 270, 201–217 (2020).

ADS 

Google Scholar
 

Kohl, I. & Bao, H. Triple-oxygen-isotope determination of molecular oxygen incorporation in sulfate produced during abiotic pyrite oxidation (pH=2–11). Geochim. Cosmochim. Acta 75, 1785–1798 (2011).

ADS 

Google Scholar
 

Balci, N., Shanks, W. C., Mayer, B. & Mandernack, K. W. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite. Geochim. Cosmochim. Acta 71, 3796–3811 (2007).

ADS 

Google Scholar
 

Killingsworth, B. A. et al. Towards a holistic sulfate–water–O2 triple oxygen isotope systematics. Chem. Geol. 588, 120678 (2022).


Google Scholar
 

Crockford, P. W. et al. Depositional controls on Δ′17O signatures of sedimentary sulfate. Geophys. Res. Lett. 52, e2024GL114184 (2025).

Hodgskiss, M. S. W., Crockford, P. W., Peng, Y., Wing, B. A. & Horner, T. J. A productivity collapse to end Earth’s great oxidation. Proc. Natl Acad. Sci. USA 116, 17207–17212 (2019).

ADS 

Google Scholar
 

Wang, H. et al. Sulfate triple-oxygen-isotope evidence confirming oceanic oxygenation 570 million years ago. Nat. Commun. 14, 4315 (2023).

ADS 

Google Scholar
 

Peng, Y., Hattori, S., Zuo, P., Ma, H. & Bao, H. Record of pre-industrial atmospheric sulfate in continental interiors. Nat. Geosci. 16, 619–624 (2023).

ADS 

Google Scholar
 

Crockford, P. W. et al. Claypool continued: extending the isotopic record of sedimentary sulfate. Chem. Geol. 513, 200–225 (2019).

ADS 

Google Scholar
 

Bao, H., Lyons, J. R. & Zhou, C. Triple oxygen isotope evidence for elevated CO2 levels after a Neoproterozoic glaciation. Nature 453, 504–506 (2008).

ADS 

Google Scholar
 

Waldeck, A. R. et al. Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment. Nat. Commun. 16, 2087 (2025).


Google Scholar
 

Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).


Google Scholar
 

Wostbrock, J. A. G., Cano, E. J. & Sharp, Z. D. An internally consistent triple oxygen isotope calibration of standards for silicates, carbonates and air relative to VSMOW2 and SLAP2. Chem. Geol. 533, 119432 (2020).


Google Scholar
 

Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).

ADS 

Google Scholar
 

Reinhard, C. T., Planavsky, N. J. & Lyons, T. W. Long-term sedimentary recycling of rare sulphur isotope anomalies. Nature 497, 100–103 (2013).

ADS 

Google Scholar
 

Evans, S. D., Diamond, C. W., Droser, M. L. & Lyons, T. W. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerg. Top. Life Sci. 2, 223–233 (2018).


Google Scholar
 

Derry, L. A. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope anomaly. Earth Planet. Sci. Lett. 294, 152–162 (2010).

ADS 

Google Scholar
 

Schrag, D. P., Higgins, J. A., Macdonald, F. A. & Johnston, D. T. Authigenic carbonate and the history of the global carbon cycle. Science 339, 540–543 (2013).

ADS 

Google Scholar
 

Cramer, B. D. & Jarvis, I. in Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 309–343 (Elsevier, 2020).

Peng, Y. et al. Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: evidence from triple oxygen isotopes. Geology 42, 815–818 (2014).

ADS 

Google Scholar
 

Bao, H. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution. Anal. Chem. 78, 304–309 (2006).


Google Scholar
 

Wei, Y., Yan, H., Peng, Y. & Bao, H. Quantitative conversion of sulfate oxygen for high-precision triple oxygen isotope analysis. Anal. Chem. 96, 19387–19395 (2024).


Google Scholar
 

Cao, X. & Bao, H. Small triple oxygen isotope variations in sulfate: mechanisms and applications. Rev. Mineral. Geochem. 86, 463–488 (2021).


Google Scholar
 

Canfield, D. E., Knoll, A. H., Poulton, S. W., Narbonne, G. M. & Dunning, G. R. Carbon isotopes in clastic rocks and the Neoproterozoic carbon cycle. Am. J. Sci. 320, 97–124 (2020).

ADS 

Google Scholar
 

Zhang, Z. et al. Oldest-known Neoproterozoic carbon isotope excursion: earlier onset of Neoproterozoic carbon cycle volatility. Gondwana Res. 94, 1–11 (2021).

ADS 

Google Scholar
 

Halverson, G. P., Porter, S. M. & Shields, G. A. In Geologic Time Scale 2020 (eds Gradstein, F. M. et al.) 495–519 (Elsevier, 2020).

Kendall, B., Creaser, R. A. & Selby, D. Re–Os geochronology of postglacial black shales in Australia: constraints on the timing of ‘Sturtian’ glaciation. Geology 34, 729–732 (2006).

ADS 

Google Scholar
 

Condon, D. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

ADS 

Google Scholar
 

Lu, M. et al. The DOUNCE event at the top of the Ediacaran Doushantuo Formation, South China: broad stratigraphic occurrence and non-diagenetic origin. Precambrian Res. 225, 86–109 (2013).

ADS 

Google Scholar
 

Fan, R., Deng, S. H. & Zhang, X. L. Significant carbon isotope excursions in the Cambrian and their implications for global correlations. Sci. China Earth Sci. 54, 1686–1695 (2011).

ADS 

Google Scholar
 

Wen, J. & Thiemens, M. H. Multi‐isotope study of the O(1D) + CO2 exchange and stratospheric consequences. J. Geophys. Res. Atmos. 98, 12801–12808 (1993).

ADS 

Google Scholar
 

Burke, A. et al. Sulfur isotopes in rivers: Insights into global weathering budgets, pyrite oxidation, and the modern sulfur cycle. Earth Planet. Sci. Lett. 496, 168–177 (2018).

ADS 

Google Scholar
 

Heidel, C. & Tichomirowa, M. The role of dissolved molecular oxygen in abiotic pyrite oxidation under acid pH conditions—experiments with 18O-enriched molecular oxygen. Appl. Geochem. 25, 1664–1675 (2010).

ADS 

Google Scholar
 

Sahoo, S. K. et al. Oceanic oxygenation events in the anoxic Ediacaran ocean. Geobiology 14, 457–468 (2016).


Google Scholar
 

Bao, H., Cao, X. & Hayles, J. A. Triple oxygen isotopes: fundamental relationships and applications. Annu. Rev. Earth Planet Sci. 44, 463–492 (2016).

ADS 

Google Scholar
 

Planavsky, N. J. et al. A sedimentary record of the evolution of the global marine phosphorus cycle. Geobiology 21, 168–174 (2022).


Google Scholar
 

Shi, W. et al. Sulfur isotope evidence for transient marine-shelf oxidation during the Ediacaran Shuram Excursion. Geology 46, 267–270 (2018).

ADS 

Google Scholar
 

Fike, D. A., Grotzinger, J. P., Pratt, L. M. & Summons, R. E. Oxidation of the Ediacaran Ocean. Nature 444, 744–747 (2006).

ADS 

Google Scholar
 

McFadden, K. A. et al. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105, 3197–3202 (2008).

ADS 

Google Scholar